OPERATION

CECEMBER,

THE QASAR
DUAL PROCESSOR
MICROCOMPUTER

MANUAL

1980

Copyright (C) 1982 by

FAIRLIGHT INSTRUMENTS PTY.

15 Boundary Street
Rushcutters Bay

SYDNEY, AUSTRALIA 2011
Telephone (02) 335222
Telex AA27398

LTLs

TABLE OF CONTENTS

T
1
1
1
1
1
1
1
1
1

m

OOMTIDO O NP

QASAR COMPUTER . « « « « « &
Memory Organization .« o o e
Firmware .
Dual Processor Operation .
Using The 68@2/€809 Sjstem

Interfacing
Floppy Disk Operations o o e
Front Panel Controls
System Startup Procedure . .
Interrupts

L] * L] L]

1.9.1 Using Interrupts uitb the ﬁual.séﬁﬁ
1.9.2 Using Interrupts with the 6€00/68@9

2.0 TEE QLOS CPERATING SYSTEM
QDOS Memory Restrictiorns
Writing and Running a Program

E
1
2
3 Program Debugging . . . « . .
S
0]
1

ASAR GRAPHICS / LIGET-PEN SYSTEM
.1 System requirements
Loading the ICPACK . - . .

3.1.1 Loading by command . .
3.1.2 Auto-load by QLOS . . .
3.1.3 When not using QLOS . .
Xeyboard . . ¢« ¢ ¢ o ¢« o o &
Line Printer
Video Screen . o e e e
Character output
Fscape sequences . . . « o .
Fen versus cursor . e e
Commands Ty 2Troup « « « o« .« .
Screen colour . « « . . .

T
2.
2.
2.
Q
3.
3.

[S IV RO NN KO N e]
L] L] . . L)
OO TOhOP LN

3.9.1 BC n Set background colour

3.9.2 IN Invert srreen image
3.10 Graphics group« o o
3.12.1 Pen colour« e

3.16.2 PCn - Set pen oolour.

3.18.3 O0ffset register

with QDOS .

. . ° . ° .

® o o o 8 o © o o o o o
.

e © o 9 o o o o o
L]
L]

L]
°
o o e e o6 e ° o o o .

. .

. e o o o . o o . * o
.
0
°

e + o o o o ¢
. . [. [] . L4

3.10.4 OF x,y - Set offset to x.y . .
3.12.5 CR x,y - Add X,J to offset. . . .
3.10.6 Move pen e
3.19.7 A x,y - Move pen ebsolute. « e e
3.12.8 MR x,y - Move pen relative . e
3.10.8 Vector plot . e e e e
3.12.19 PA x,y - Plot absolute. e e o o
3.10.11 PR x,y - Plot relative.

3.10.12 Dot (point) plotting .

3.10.13 DA x,y - Plot a dot absolute R
3.10.14 TR x,y - Plot a dot relative. . .

3.11 Character group . . . e e

3.11.1 Curscr Mode+ » v

3.11.2 CUn = Set cursor modee. « « o o &

3.11.3 Cursor movement
3.11.4 MC 1l,c - Move cursor to line column

QASAR computer - Operation Manual

5 o e o e © o o o

L]] . .

. o o e o . o o . o o ° o e . e o °

° . o o . L) L] . .] °

e e ©® o o

TABLE OF CONTENTS _ Page

.11.5 CP - Move cursor to pen position. . . . 29

3.12 Scrolling area . . e e s s o e o o 30
(3.12.1 TS 1 - Set top of scroll et e e e e . 30
W 3 13 PI‘OtE"tEd “181(15 30

3.13.1 PF line,char,len - Define a field. P 1
3.13.2 GF field - Move cursor to a field. . . . 39
3.14 Light PEN STOUDP v «¢ ¢ ¢ ¢ o o o o o o o o « « 31

3.14.1 Light-pen commands o 31
3.14.2 LG m - Return position in form x,y . .31
3.14.3 IC m - Return line,char. position . . . 31
3.14.4 LFm - Return a field number. 31
3.15 Defaults o ¢« v & v ¢ ¢ ¢ ¢ o o o . e+ e o« o 32
3.16 S~reen Control Codes t e e s 6 e s e o @ 33
3.17 Graphics Command Summarv . e e e 4 e o s . 34
5.18 Examples of Use of Graphics . « « ¢« ¢ ¢« & o . 2
3.129 QASAR Compiler Basic « « ¢« ¢ ¢ « o« « e o« o 35

4.9 QASAR ROM SUBROUTINES
4.1 Peripheral I/0 Functions . .

4.2 PROCESSOR 1 SPECIAL RCUTINES
4.2.,1 Time-of-day clock
4.2.2 User Timer
4.2.3 Keyboard Character Flaé . B ¥
4.2 Floppy Disk Controller Subroutines e o s o o o« 43

DEBUG MONITOR PROGRAM (MCNTR) « . . + . . . 47
5.1 Command Promdt . . & v 4 4 4 4 o o o o o o
5.2 Opening commands . « ¢ ¢ ¢« ¢« ¢ o o o o o
5.2.1 The Slash, / . ..

- 5.2.2 The Reverse Slash, \ (shift-1) . . .
5.2.3 The Line Feed, <11ne feed> (control- J) . 45

2.4 The Up Arrow, <up arrow) (shift- N) . . .50
.5 Named Locations, $. . « . . . « « o« . 50

nging the Contents of a Location 51

.1 The Return, <return) . . . 52
r

NS
—

o
Q

S
[00)

(8]
W\
b" .

:v-.—;m(.n::ummwodmmmmt»mmncncn

2 Mixed Open, Modify and Close commands . . 53

e

2

a

3

3

dress Sequence Operations 53
.£.1 The AT Symbol, @ (shift-P) ¢« ¢« + e+ o« . Ba
.5.2 The Right Angle Bracket, > 54
8.3 The Left Angle Bracket, < 55
.5.4 Branch Offset Calculation, 30 58
reakpoint Facilities . . . ¢« ¢« ¢« v ¢« v « ¢« « . 57
.£.1 Setting Breakpoints 57
5.2 Removing Breakpoints
5.3 Examining Breakpoints
nning A Program
.€

.
.
« o
6]
[(V]

.1 The GO command, ;G . . .
6 2 The Proceed command. - < 1)
e FILL ~ommand, '}F . . ¢« ¢« ¢« ¢ ¢« « « o +» . . 60
dress Relocation Techniques 61

5.8.1 The Segment Relocation Command, 61
5.8.2 The Index Relocation Commanrd, , 62
S.5 MONTR Command SUmMmMary . « o« « « « o« o o« « o« « + €3

.

|
|
l A QASAR computer - Operation Manual

QASAR

L

LH

_— FLOPPY DISKDRIVES
|~ (T0 SIDED 0PTIONAL)

KEYBOARD

e ————e——

VDU #1

VU #2
(OPTIONAL)

TYPICAL QASAR COMPUTER SYSTEM

PRINTER
(OPTIONAL)

Section 1: THE QASAR COMPUTER

-SECTION 1-

1.0 THE QASAR COMPUTER

The QASAR dual processor is designed as a general
purpose computer suitable for commercial and scientific data
processing, program development, data gathering, and many
other applications. An extensive range of software 1is
avallable for the QASAR, including a disk operating system,
editors, assemblers, and high level language compilers.

The heart of the QASAR is its powerful Dual Processor
architecture. Two microprocessors operate effectively
simultaneously on the one common bus. The inclusion of a
second microprocessor adds very little to the cost of the
computer yet allows sudbstantial speed improvements and
program simplification in many applications. For instance, a
system whi~h would require a lot of interrupt handling with a
single processor can be implemented more simply using a dual
processor with one CPU dedicated to a polling and buffering
loop, allowing the main processor to handle complete messages
rather than separate data items. The QASAR uses this
technique for all non-disk I/0.

The QASAR’S modular construction allows easy expansion
or modification to suit a user’s specific requirements. The
basic computer consists of a power supply, two single or
doutle sided floppy disk drives, a card cage, backplane, and
chassis. Two processor cards are avallable- a dual 68¢2 card
and a 6800/6809 version. A typical system would also include
a processor control card, 64K mermory card, floppy disk
controller, and dual TVT 4interface (memory mapped video
display). Other options include a egraphics display card and
a light pen controller.

The minimum peripheral requirement for the computer is a
keyboard and video monitor, dut a second monitor and printer
may be added. A standard serially interfaced computer
terminal is not normally required btut may be used ia place of
the keytoard and TVT.

1.1 Memory Organization

The QASAR system uses two processors which talk to a
common bus, both running at their maximum rated clock speed
of 1 MHz. Data and address signals for each processor are
interleaved, resulting in a 2 MBz bus. All QASAR RAM cards
have a cycle time of 500 ns, thus each processor can have
it°s own 1independent address space without causing ©bus
contention. Blocks of memory can be assigned as common to
both processors, allowing inter-processor communication.

The top 4X of memory space ($F222-$FFFF) is located on
the Processor Controller card and performs specialised system
functions for both processors. These 1include serial and

QASAR Users Manual- December, 1580 Fage 1

-Section 1: THE QASAR COMPUTER

parallel 1/0, floppy disk operations, processor interaction,
and program debug facilities. '

The remaining memory srace is availabdle for the user’s
RAM. The 64K cards allow separate blocks of 16K physical
memory to be assigned, under program control, to any 16K
boundary 1in the address space of either, both, or neither of
the processors. This allows each processor to access more
than 64K by switching different blocks in and out of the same
address space. Each memory module is assigned a card number
(2 to 15) with a hardware switch, allowing up to 64 blocks of
1€K to be uniquely identified. It is therefore theoretically
possible to use up to 1 megabyte of RAM, even tkough the 6822
can only address 64K bytes directly.

The memory map of the QASAR breaks down to two parts:
hardware determined and I/0 system dependent.

The hardware determined section is the address space for
both processors from $F20@ up, pPlus the screen output cards,
whichever 1is/are 4installed. In the case of a standard QASAR
system, the Screen output cards are Processor 1 unique,
although for special applications they can bve optioned for
Processor 2 instead.

The I/0 dependent address space is that from $@0CQ-EFFF
inclusive and is the system RAM area - used by QDOS and user
programs. How it is initially allocated is determined in the
first instance by the firmware installed. If the ICOPACK is
loaded, then a different allocation 1is made. Al1l variants
assume mapping RAM card @ is installed. All RAM bdlocks on
that card are enabled to at least one address space., Other
RAM cards in the system will remain disabled wunless
explicitly enabled by user programs.

Figure 1.2 shows the QASAR memory map as configured by
the firmware on power-up or RESTART. Note that 1if the
Graphics option is installed, no P1 ram above 48009 1is
availavle. If the T.V.T. option is installed instead of the
gra§hics, P1 RAM is available from $8008 to $ECPY (See figure
1.3).

For detailed description of use of the Mapping Memory,
refer to the Q@SE 64K RAM card data sheet.

1.2 Firmware

The QASAR ROMs, 1located on the Processor Controller
Card, provide a debug monitor program as well as subdbroutines
for peripheral and floppy disk I/0 functions.

The debug monitor (see section 5) is entered by pressing
the console interrupt button, which sends an NMI to processor
2. This halts a program running in processor 2 and allows
the user to examine and change registers and memory
locations, set breakpoints in the program, and restart it
from the point where the NMI occurred.

QASAR Users Manual- Lecember, 1980 Page 2

Section 1: THE QASAR COMPUTER

POWER SUPPLY
110/240VAC -

L, (T0 ALL MODULES)
BI-DIRECTIONAL HIGH SPEED DATA AND ADDRESS BUS (MOTHER BOARD)
IT T T T 1T
" [
csm'n;: ;:::mon aéf:%%: 5%%2&'&] AT CONTAOLLER DuALTVT ':EEEE'? ,
;LH?V"!vl ;'ﬁ?\:'z WU\LQ LIGHT VWJ;II MGII‘J;RS g’l\g l F:ll[" ;l“ﬂ.
MONITOR PEN .E g :":T"g: &
Figure 1.1 QASAR 3LCCK DIAGRAM

- Both Graphics ard T.V.T. options are shown.

QASAR Users Manual- December, 19ag Fage

Section 1: THE QASAR COMPUTER

Standard QASAR firmware partitions the system such that P1 is
an I/0 processor while P2 runs the ‘system’ and disk I/0. The
machine can be simply regarded as a single processor (P2)
computer attached to sophisticated terminal and line vprinter
driver hardware whose internal workings remain transparent to
the user.

The primary firmware functions supported by Processor 2
are:

-to erable orderly system start-up.

-for keyboard input, and output to console and line printer.
These ROM calls communicate with the P1 I/0 routines via
simple transfer locations in common RAM.

-for floppy disk transfers to and from memory.

-for hexadecimal debugging. A ‘monitor’ ROM is installed
allowing in-memory debugging of user programs.

-to start up (Boot) the disk operating system automatically
after Restart.

P1 has firmware to enable it to overate as the I/0
processor. The characteristics of the I/0 system depend on
whether the wuser has opted for a TVT or graphics screen as
the console output device.

The TVT is a memory-mapped device where ASCII character
codes are converted by hardware to characters on the screen.
The advantage is speed of operation.

The graphics device dumps an area of memory data bit by
data bit to the screen. Images, such as those of characters,
are written as bit patterns into that memory and appear drawn
on the screen. With this option 1installed, P1 may run a
special I/0 program (the IOPACK), 1loaded off disk, which
converts the screen into a graphics terminal. While still
allowing normal character output, it will interpret commands
which allow vector and point Plotting, flexible character and
cursor modes, protected field I/0, and light-pen processing.

For full details of the TIOPACK functions, refer to
section 3.

All P1 firmware supports 32-character keyboard queuing.
The TVT supports a 2 Kilobyte 1line oprinter queue. The
graphics system supports approximately 12X of line printer
queuing if the IOPACK is loaded.

QASAR Users Manual- December, 1989 Page 4

Section 1:

TEE QASAR COMPUTER

MEMORY ADDRESS
(SFFFF INTERRUPT INTERRUPT o |
SFFEO| _ _VECTORS _ _| _ VECTORS _*
P1 P2
RAM RAM
- | S$FFOO
=
['7)
S COMMON RAM
w .
& | sFooo
Q
w
g J PERIPHERAL REGISTERS P —
g | srcoo
< | srarE| P1RESTART VECTOR | P2 RESTART VECTOR
D it Y
| P1 P2 < 1
| \ & A
= | srsoo ROM ROM L
<
o
2
8 COMMON ROM &
.| ¢raoo ot
COMMON ROM L
\ $FODO
(P1TVT #1
PITVT #4
= | $eooo P2
Q
= SEE TEXT USER RAM
& | scooo
2
= P
= GRAPHICS
S
(X)
= | ss000 ——
2
D=
]
=
Q
(7]
Q
=
[7V]
o COMMON
a USER
] RAM
w
-d
[--]
<
[- 4
<
>
$0020 -
DISC CONTROLLER VARIABLES
\, $0000
Figure 1.2

- KAM Mappirg is configured by firmware on startup.

6800 6809

SYSTEM SYSTEM
FFFC/D NMI NMI
FFEA/B SwW1 SWit
FFEB/9 -
FFEB/7 IRQ11 -
FFE4/5 IRQ10 swi2
FFE2/3 IRQ9 SWI3
FFEO/1 IRQ8 -
FFEE/F 1RQ7 IRQ7
FFEC/D IRQS IRQ6
FFEA/B IRQS IRQS
FFESN IRQ4 IRQ4
FFEB/7 IRQ3 IRQ3
FFE4/5 IRQ2 IRQ2
FFE2/3 IRQ1 IRQ1
FFEO/1 IRQ0 IRQO
FFDE/F IRQ1S
FFOC/D IRQ14
FFDA/B IRQ13
FFD8/9 IRQ12
FFD6/7 IRQ11
FFD4/5 IRQ10
FFD2/3 IRQY
FFDON IRQ8

RESERVED LOCATIONS

FCFD PROCESSOR #1P.1.C.U.
FCFC PROCESSOR #2P.1.C.U.

FCFB-
Fors |- PLA.

FCFS—
Eor |- ACJA.

FCET-
Feer |- FLOPPY CONTROLLER

FCOF- | GRAPHICS DISPLAY
FCO0 | REGISTERS

FCAF- | .
A }n.A.M.MArconrnoL

QASAR MEMORY MAP - BARDWARE ATLOCATION

QASAR Users Manual- December, 1589

Page

'Section 1: THEE OASAR COMPUTER

P1 P2
7 772777 ‘ 0.
W 7/5555 -
USER
RAM
DISABLED
$2000
$C000 _ anos
P1 P2 $0080
GRAPHICS
RAM §.2 USER DIRECT
B0ARD . ADDRESSING
RAM
$0020
$2000 : DISC
CONTROLLER
. VARIABLES
COMMON $0000
RAM 8.1
$4000
% -
P1
RAM §.3 P2
(10 PACK) RAM 8.4
$0000

Flgure 1.3 QASAR MEMORY MAP WEEN RUNNING GRAPEICS SYSTEM
- QDOS and IOPACK are botk loaded. The RAM bYlock
numters are in the format: <zard .blozck)

%W VASAR Users Manpual- Tecembter, 159¢ Page €

Section 1: THE QASAR COMPUTER

1.3 Dual Processor Operation

In normal operation, user programs are executed by
processor 2 while processor 1 executes an I/0 loop handline
the keyboard, TVT display and printer, and updating the
time-of-day clock. Processor 2 invokes these functions by
calling routines in common ROM which perform the necessary
communication with the other processor. feyboard and printer
data is queued by processor 1, allowing processor 2 to
continue with other tasks while the peripherals are kept
busy.

A user program may be rum in processor 1 by loading it
into common memory and storing the start-of-execution address
in locations $FE?1 (H1) and $FE@2 (Lo). Processor 1°s 1I/0
handling 1loop 1includes a test of a trigger byte at location
$FEGZ. When this bdyte is set to non-zero through processor
2, processor 1 saves a return address for the I1/0 loop and
Jumps to the address stored in locations $FE@1,2.

All keyboard, screen, printer, and time-of-day clock
operations will be suspended until processor 1°s I/0 handling
loop is re-entered. A return address for this purvose 1is
stored in locations $FE@3 (Fi) and $FE@4 (Lo). %When the user
program in processor 1 jumps to this address, the trigger
byte 1s cleared and normal I/0 operation is resumed. The
start address at locations $FE?1,2 is preserved so that the
User program may be re-entered by setting the trigger byte to
non-zero again.

The time-of-day clock may be kept accurate without
returning to the I/0 loop by calling the subroutine EXROUT at
location $F8283 in processor 1°s unique ROM area. Processor 1
must execute this routine at least once every 15ms to ensure
that clock "ticks are not missed.

1.4 Using The 6800/€8@9 System

The €809 is a third generation microprocessor. It 1is
easier to program than the 680¢ and faster in execution due
to its enhanced instruction set, addressing modes, and 16-bit
arithmetic capability.

A QASAR computer fitted with the 6800/68032 processor
card rrovides facilities for developing and running prosrams
in either or ©both processors with no hardware charnges or
ad justments. The computer 1is designed primarily as a
development system for either 680@ or 6829 programs with the
processor configuration under full software control.

Normally the 6889 functions as processor 1 and after
restart is waiting in a loop while processor 2 runs the disk
operating system and other 6829 programs. The 686@ handles
disk and ©peripheral 1I/0 without queueing, just as a single
processor computer would.

QASAR Users Manual- Decemter, 1980 Page 7

‘Section 1: THE QASAR COMPUTER

The QDOS "LOAD” command can be used to load a 6889
program from floppy disk into any available area of common
memory (memory restrictions are outlined in section 2.;);
Control can be passed to the 6899 bvy specifying the U
option to enter the 6809 monitor, or the UG options to
start execution of the loaded program. "

When a program is loaded with the U option, the 6800
is reconfigured to operate as an I/0 processor for the 680S.
A1l calls to operating system functions or ROM subroutines
from the 6802 program are detected and executed by the €80@0.
This operation 1is automatic and of no concern to the user.
It provides I/0 compatibility between the processors,
allowing existing 6800 programs to be run on the €8¢9 with a
minimum numter of changes. '

Peripheral I/0 functions available to 6808 programs
through ROM calls to locations $F@Q0@-$F02A (see section 5)
have been duplicated for the 6809 at locations $F400-$F42A,
i.e. the same ~alls may be used in 6809 programs provided an
offset of $400 is added. Floppy disk operatiors have the
same entry points for both processors ($F8@@-F82C). The line
printer routines available to 6803 programs as RCM calls to
locations $F7D6-$F7F4 are not available to 68¢3 programs,
however these functions may te invoked throush system calls
which are 1identical for ©bYoth processors. There are no
time-of-day clock routines in the €800/€6809 system.

Separate monitor ROMs are provided for the two
processors as their machine codes are incompatible. The 6800
monitor may be entered directly by pressing the console
interrupt button (prosessors 1 and 2 must both te
interrupted). The 6809 monitor may then be entered by typing
the command M . This switches the 6808 to an I/0C handling
routine for the €680S9. The monitors are almost identical 1in
operation (see section 5).

The 6800 and €809 processors may be used simultaneously
through the trigeer mechanism described in section 1.3. The
starting address of a memory-resident 6809 program is placed
in locations $FEA1 (Hi) and S$FEG2 (Lo) wusing tre 6800
processor, and the trigger tyte ($FE0@) is set to non-zero to
start the 6809 executing. The €800 continues to operate
indepeniently and does not enter tke I/0 servicing mode for
the €80S. Hence the triggered 6809 program cannot perform
any peripheral or disk I/0 and must wuse common memory
locations for communication with the other processor.

_QASAR Users Manual- December, 1989 Page 8

Section 1: THE QASAR COMPUTER

1.5 Interfacine

The Processor Controller card provides two serial
outputs and one serial input as well as two 8-bit parallel
bi-directional ports. In normal operation the serial input
is wused by the keyboard and one serial output controls a
printer. . .

Prototyping cards (8"'x 8") are available for custom
tuilt 1interfaces and these plug into any of the nine spare
slots on the motherboard. All slots are pre-wired with data,
address, timing, control and power supply lines. The QASAR
Dower supply provides 8 V at 1@ A (15 A option available) and
+/- 12 Vat 1.0 A (1.5 A option availabdle).

Varilous special purpose interface cards are availabdble
for the QASAR.

1.6 Floppy Disk Operations

All disk operations are handled by IMA through the
floppy disk controller module and routines in processor 2°s
unique ROM. Each DMA cycle 1is achieved ty stretching
processor 2 clock phase 1 by one microsecond. This makes DMA
completely transparent to the processors, saving the time
required to do a Request/Acknowledge cycle that would
othervwise be required.

A user program normally accesses the floppy disks by
calls to the QLOS operating system which maintains file
directories and sector data buffers. QDOS supports single
and doubdle sided floppy disks with a maximum capacity of 250K
bytes (single-sided) or 500K bytes (double-sided) per disk.
Up to 160 files may be stored on each diskette, and files may
range in size from 512 bdytes up to the maximum capacity of
the disk.

QASAR Users Manual- Lecember, 198¢ Page 3

"Section 1: THE QASAR COMPUTER

1.7 Front Panel Controls

(Refer to Figure 1.4)
Power supply LEDs: These monitor the +5 and +/-12 V power
supplies.

Restart switch: This pushbutton switch causes either or both
Processors to re-enter the ROMs at points specified ty
the restart vectors in each unique processor ROM
(location $FBFE). Normally both Processors are
restarted. Processor 2 will initialise and run the QDCS
operating system on restart if a QDOS system disk is
Placed in the left hand drive. Power-on restart always
resets both processors and all peripheral controllers.

Console Interrupt switch: This Pushbutton switch causes a
non-maskabtle interrupt to be issued to either or both
Processors. Normally only rrocessor 2 is interrupted so
that screen and keyboard operation is retained. The NMI
enters the debug package (monitor) in common ROM.

On the 6800/6809 QASAR, bYoth processors must be
interrupted and the €800 monitor is entered initially.
The message Aj;hhhh will te displayed, where hhhh is the
contents of the program counter at the time the
interrupt occurred. The contents of the CPU registers
and memory may be examined and/or changed wusing the
Monitor. the command P will cause the CPU to Procede
with tge user program from the point at which it was
aborted.

Processor 1 and 2 Run/Halt switches: These control the
run/halt signals to each CPU and are normally set to
Run .

Processor 1 and 2 Wait LEDs: These reflect the “Bus
Availadle signal from each processor. They light when
the respective processor is halted or has encountered a
WAIT instruction.

Terminal Speed: This 8-position switch sets the baud rate for
all serial data lines and is normally set to 9€00.

Printer Mode: This switch provides a marual override of the
software controlled “printer start signal and 1is wused
to turn off unwanted printout. It is rormally set to

"Aduto”.

QASAR Users Manual- Pecember, 1580 Page 19

Section 1: THE QASAR COMPUTER

(roven Y e i Yoz Frogmod) e)
! ! . 9ké 10
°© 1@ @ ool [{).
+12v 182 182 WAIT WAIT 24 300
k2 6o
o) __ y
+5V ()
HALT HALT MANUAL
° ® @ @
-12v " RESTART | INTERRUPT RUN RUN AUTOMATIC

Figure 1.4 QASAR FRCNT PANEL CONTROLS

FOIL MUST o8
APPLIED (TO ALLOW
WRITING 70 018C)

FIGURE 1.S DISC INSERTION / REMOVAT. TECHENIQUE

QASAK Users Manual- Lecember, 128¢

Qowgn Jy J¥ J¥ J& Jy PRINTER MODE J

]
Section 1: THE QASAR COMPUTER

1.8 System Startup Procedure

a) Connect Video Display, Alphanumeric keyboard, and Line
Printer (if used).

b) Ensure that Mains key switch located on rear panel is in
the OFF position.

c) Set all front-panel controls as described in Section 1.7
(above). Refer to Figure 1.4. ‘

d) Switch power ON. Note that the key can be removed with the
switch in the ON position if desired.

e) The system start-up prompt will be displayed on the
screen. This means the system is now ready to boot the disk
operating system.

e) Insert a QDOS System Disk in Lrive #@ (the left-hand one)
as shown in Figure 1.5. Push the disk all the way in until it
clicks home. Latch the drive door firmly shut.

f) The QASAR will now load the IOS automatically and display

the QDOS sign-on message when it is ready to accept operator
commands.

If a fatal disk error occurs during the bootstrap

séquence, messages as described in the QDOS manual will be
displayed.

*% WARNING ** Diskettes should not te left in the drives
when power is heing switched on or off as there is a risk of

data corruption.]ITQ—Tﬁferruptsx

The QASAR microcomputer system 1is provided with an
expandable prioritised interrupt system. .

Interrupt oprioritisation and automatic vectoring is
provided by 8214 Priority Interrupt Control Units located on
the Processor Control card. The standard configuration
supports & levels of interrupt.

As a general rule, the QDOS overating system does not
operate with interrupts, so user programs using interrupts
should ensure that the 1interrupt mask bit is SET during
system calls. If necessary, interrupts may be used provided
the instructions in the QDOS manual are followed.

QASAR Users Manual- December, 1980 Page 12

Section 1: THE QASAR COMPUTER

Interrupt vector addresses are:

ADDRESS FUNCTION

FFFE/F Selects restart vector in unique ROM for
particular CPU (at location $BFFE).

FFFC/D RAM address containing NMI vector.

FFFA/B RAM address containing SWI vector.

FFF8/S Unused (reserved for level 12).

FFF6/7 Unused (reserved for level 11).

FFF4/5 Unused (reserved for level 10@).

FFF2/3 Unused (reserved for level g).

FFFo/1 Unused (reserved for level 8).

FFEE/F IRQ priority level 7 vector (lowest).
FFEC/D IRQ priority level 6 vector.
FFEA/B IRQ priority level 5 vector.
FFE8/9 IRQ priority level 4 vector.
FFE6/7 IRQ priority level 3 vector.
FFE4/5 IRQ priority level 2 vector.
FFE2/3 IRQ priority level 1 vector.
FFEQ/1 IRQ priority level @ vector (highest).

These vectors are stored in each processor’s unique RAM,
located on the Processor Control card. The user’s program
must initialise these vectors with the address of the
interrupt service routine corresponding to each 1level of
interrupt. Levels @ to 7 are controlled by Priority
Interrupt Control Units (PICUs) 1located on tke Processor
Control card. The remaining five levels can be provided by a
second PICU elsewhere in the system.

The user’s program establishes an interrupt opriority
level by writing a numbder from @ to 7 into the PICU Current
Status Register (SFCFC for processor 1, $FCFD for processor
2). This number is the ONES COMPLEMENT of the desired mask
level, i.e. writing a %07 to $FCFC will enable all levels of
interrupt to ©processor 1, and writing a %03 to SFCFD will
enable interrupt levels 2,1,2,3 and 4 to processor 2. .

When an interrupt comes in on a level above the highest
masked level, the appropriate processor will fetch the IRQ
vector corresponding to that level.

The Interrupt Latch is reset by writing a new Current
Status to the appropriate PICU. Tkis must take pPlace after
an interrupt st that the prioritiser will ©be re-arrmed. To
properly dismiss an interrupt, the interrupt routine should
first reset the interrupting device (e.g. ACIA, PIA). then

write the desired mask level to the PICU tefore performing
the RTI.

QASAR Users Manual- Decembter, 1989 Page - 13

|

Section 1: THE QASAR COMPUTER

1.9.2 Using Interrupts with the €Q02/6889

Operation of interrupts using the 6809 is performed in
much the same way as in the dual 6829 system, with the
exception that the memory map for interrupt vectors is
expanded to accommodate the fast IRQO and the two extra
software interrupt vectors required for the €2@9.

The interrupt vector addresses for processor 1 (6829)
are:
ATDRESS FUNCTION
FFFE/TF Selects restart vector in unique ROM for
processor 1 (at location $RFFE).
FFFC/D RAM address containing NMI vector.
FFFA/B RAM address containing SWI1 vector.
FFF8/9 Unused.
FFF6/7 RAM address containing FIRG vector.
FFF4/5 RAM address containing SWI2 vector.
FFF2/3 RAM address containing SWI3 vector.
FFFe/1 Unused.

FFEE/F IRQ priority level 7 vector.

FFEC/T IRQ priority level € vector.

FFEA/B IRQ priority level & vector.

FFER/S IRQ priority level 4 vector.

FFE6/7 IRQ priority level 3 vector.

FFE4/5 IRQ priority level 2 vector.

FFEZ/3 IRQ priority level 1 vector.

FFEQ/1 IRQ priority level @ vector (highest).
FFDE/F IRQ priority level 15 vector (lowest).
FFDC/T IRQ priority level 14 vector.

FFDA/B IRQ priority level 13 vector.

FFD8/9 IRQ priority level 12 vector.

FFL6/7 IRQ priority level 11 vector.

FFD4/5S IRQ priority level 10 vector.
F¥D2/2 IRQ priority level 9 vector.
FFLo/1 IRQ priority level 8 vector.

Tre vector addresses for processor 2 (6800) remain the
same as for the dual 6800 system (above).

QASAR Users Manual- December, 158¢ Page 14

Section 2: THE QDOS OPERATING SYSTEM

-SECTION 2-

2.9 THE QDOS OPERATING SYSTEM

QDOS 1is an 1interactive operating system that obtains
commands from the system console. These commands are used to
move data on the floppy disks, to process data, or to
activate user-written programs.

On every 0QDOS diskette there are nine files which
comprise the operating system. These files contain the
resident operating system, a series of overlays to reduce the
main memory requirements of the system, and standard error
messages. There is also a file directory containing the
names, locations and format descriptions of all files on the
diskette. A Retrieval Information Block (RIB) is associated
with eack file and specifies which disk locations are used by
the file (these are not necessarily contiguous). Executable
binary files also have a starting load address and a starting
execution address contained in the RIB.

QDCS files are identified by a name followed by a two
letter suffix which defines the file typre, and an optional
disk drive number. Allowable file types 1include program
source or ASCII data, loadable binary object files, and chain
or procedure files containing a sequence of 0QDOS commands.
The type of file is svecified in the attribute field of the
directory entry. Certain QDOS functions assume a default
suffix for a particular file type (e.g. .SA, ASCII file) but
any suffix may be used provided the full name is entered.

All QUOS commands are executable binary files with the
suffix .CM. When a commend file name is typed in (the suffix
is optional), the command interpreter searches the directory
and loads and executes the specified command. ODOS provides
facilities for editing and assemtling programs so that new
processes can be written and invoked as operating system
commands.

Commonly used tasks such as 1I/0 operations, string
handling, and directory and file accessing are perfaormed by
QDOS through system function calls (SCALLs) in the wuser’s
program. An SCALL 1is a software interrupt instruction
followed by a byte containing the number of the system
function to ‘tbe executed. QDCS provides over sixty of these
and additional SCALLs zan be defined by the user. A unified
I/G procedure is provided through SCALLs, enabling device
indevendent programs to be written.

QASAR Users Manual- Decemter, 198¢ Page = 15

Section 2: THE QDOS OPERATING SYSTEM

2.1 QUOS Memory Restrictions

- - -

QDCS requires at least 16K of contiguous memory to run.
The resident part of the operating occupies memory locations
$0100 to $1FFF (8X) ard this area must be preserved by user
programs 1if they use any QLOS functions. Locations $28@2 to
$001F are reserved for the variables of the floppy disk
controller. These 1locations cannot be initialised by a
program loading from diskette. In addition, if a program
requires the wuse of the diskette functions (either directly
through the floppy disk controller firmware or through the
QDOS functions), then these locations cannct be used by the
program for storage.

Command-interpreter-loadable programs must load above
location $1FFF. They can use the direct addressing area
(below $0100) for variable storage; however this area cannot
be initialised while the program is being loaded into memory.
Programs that do not make use of QDOS system functions can bde
loaded anywhere intp memory above location $081F using the

LCAD command and "V option, which allows resident QrLO0S to
be overwritten. If such programs do not use the floppy disk
controller entry points (section 3.3), the direct addressing
area below location $0020 can bte used, but only after the
program is resident in memory.

2.2 Writing and ﬁunning a Program with QDOS

The QASAR computer supports all the software tools
necessary for a complete program development system. The
QDOS orerating system oprovides the basic man-machine
interface as well as file management and process control. A
Text Editor allows source programs to be entered, modified,
and stored on diskette in ASCII format. The Macro Assembler
converts program statements into machine code which is stored
on diskette and can be loaded and run by the ovperating
system. A Linking Loader permits large programs to be split
into a number of separate modules which can be developed and
tested individually. The QASAR ROMs provide some dedug
facilities 1including treakpoint controls and instructions to
examine and change memory locations.

Each of these software products is descrited in detail
in a separate manual but the following simple example
illustrates the general procedure for writing and running a
program on the QASAR.

QASAR Users Manual- December, 1980 Page 16

Section 2: THE QDOS OPERATING SYSTEM

Stage 1- Editing

In this example a program is typed in on the console
keyboard and stored in a diskette file named TEST. The
rrogram statements are 6809 assembler mnemonics. Two SCALLs
are used to invoke operating system functions.

=EDIT TEST

@I NAM TEST

OPT NOP SUPPRESS PAGE HEADINGS

ORG $200@ STARTING LOAD ADDRESS
START LDS #STACX LOAD STACX POINTER
LDX #STRING POINT TO STRING TO PRINT
SWI

FCB $@A SCALL TO DISPLAY STRING
SWI

FCB $1A SCALL TO RETURN TO QDOS
SPC 1

STRING FCC / YOU‘RE WELCOME /

FCB $2D STRING TERMINATOR

RMB 64 RESERVE A STACK OF 64 BYTES
STACK EQU *

$I‘$3ND START START EXECUTION ADDRESS

GESS

The source program will now be saved on the drive @ disk
as the file TEST.SA.

QASAR Users Manual- December, 1980 Page 17

Section 2: THE QDOS OPERATING SYSTEM

Stage 2- Assembling

In this example the A option in the command line causes
the assembler to produce an absolute tinary object file which
is given the name THANKS.CM and saved on the same drive as
the source program (@ by default). The program listing has
been sent to the console screen but can be directed to the
line printer or a disk file.

=RASM TEST; AO=THANXS.CM,L=#CN

00001 NAM TEST

000822 OPT NOP SUPPRESS PAGE
00003A 2000 ORG $2000 STARTING LOAD
00004A 2000 S8E 295B A START LDS #STACK LOAD STACK
00005A 2003 CE 202A A LDX #STRING POINT TO STRING
0000EA 2006 3F SWI

00QR7A 2027 PA A FCB $PA SCALL TO

00008A 2008 3F SWI

2000SA 2029 1A A FCB $1A SCALL TO

00011A 200A 20 A STRING FCC / YOU’RE WELCOME /
000127 2014 @D A FCB $@D STRING

00134 201B 0040 A RMB 64 RESERVE A STACK
00014 205B A STACK EQU *

20015 END START START EXECUTION

TOTAL ERRORS @0000--00000

Stage 3= Running the program.

Program execution is accomplished by simply typing in
the object-code file name. The QDOS command interpreter is
expecting the name of a file containing a memory image with
valid 1load and start addresses. If these conditions are
satisfied, the file is loaded from diskette into memqory and
control 1is given to the start-of-execution address. The
program terminates by returning control to the operating
system with an SCATL, and QDOS prompts the operator for
another command.

=THANKS
YOU ‘RE WELCOME

QASAR Users Manual- December, 1580 Page 18

Section 2: THE QDOS OPERATING SYSTEM

2.3 Program Debugging

The QASAR computer provides several aids for program
detugging. The monitor ROM program (see section 4) may be
entered from a wuser program running in processor 2 by
executing a jump to the monitor starting address or by
interrupting the processor by pressing the console interrupt
tutton. Processor 1 should not be interrupted in a dual 6802
system as 1t handles the screen and keyboard I/0 for the
monitor. The 6800/6809 system has separate monitor programs
for each processor with a facility for switchineg between
monitors. Both processors should be interrupted and the 6809
monitor is entered initially.

Another useful aid to program debugging 1is the screen
dump. User programs running in processor 1 may write
directly to the screen VRAM in the dual 680¢ system. The
QLOS function SDUMP may te used by processor 2 in the dual
6800 system or either processor in the 680@8/€68¢9 system.

SDUMP reserves an area of the TVT screen for real-time
continuous display of a selected group of memory locations.
This data is maintained by processor 1 4in the dual 6809
system or processor 2 in the 680@/€809 system. SDUMP allows
optional display of 6-character labels along with the data,
to avoid confusion when 1large amounts of data are teing
displayed.

The SLCUMP can be directed to either of the two TVT
displays. If it is directed to the console screen (3$D@¢@),
the SDUMP information appears at the top of the screen,
occupying as many lines as required, and the remaining lower
section of the screen operates as a normal scrolled display,
except that the number of lines is reduced accordingly.

QASAR Users Manual- December, 1980 Page 19

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.0 QASAR GRAPHICS / LIGHT-PEN SYSTEM

If the QASAR Graphics hardware is installed, a wide
range of powerful I/0 functions zan de easily accessed via
the IOPACK software interface. By using simple ESCAPE
sequences, complex plotting and light-pen functions are
easily achieved. When the IOPACK is loaded, P1 ©begins

executing a sophisticated set of service routines. Features
of the IOPACK include:

Better screen density - more characters are displayable.
Graphics terminal which executes simple ASCII commands.
Easy to use light-pen interface.

Large (approx. 12K) line printer queue.

Operation transparent to the user.

Interfaces to any programs which use the system console.

3.8.1 System requirements

A QASAR computer 1is required with the following cards
installed:

- At least one mapping 64K RAM card.

= P1 only Graphics board and associated 16X RAM card.
- Light-pen btoard (optional).

3.1 Loading the IOPACK

Whenever the IOPACK is loaded, it forces P1 to execute
its ROM. The system memory map is changed to accomodate the
IOPACK in mapping RAM bdlock @3. That block i1s then mapped
down to address $000¢ in P1 unique address space. The top of
user memory becomes $BFFF and $40@¢-7FFF becomes the only
P1,P2 common RAM available to the user. Finally P1 is taken
out of its ROM and begins executing the IOPACX service loop.

P1°s stack 1is always assumed to be in the P1i KAM at $FFp@
upwards.

QASAR Users Manual- December, 1980 Fage 20

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.1.1 Loading by command

The IOPACK resides on disk as a command, called QIOPACK
and may be invoked at any time. The keyboard queue will not
be lost. Any line printer queue will be lost. The top of user

RAM will be set to $BFFF. Otherwise, the action 1is
transparent to P2.

3.1.2 Auto-load by QDOS

QDOS as supplied with QASAR graphics systems will
automatically load QIOPACK, if found on the system disk, when
the system is restarted (booted). The action may be
suppressed 1f the user requires memory rather than enhanced
I/0, by giving QIOPACK another name. Then QDOS will not find

i1t at ©boot time. The user can then use his new name to load
the IOPACK as a command if desired.

3.1.3 When not using QDOS

If the user wishes to use the IOPACK with a different
disk operating system (such as UCSD Pascal) then it is
accomplished by loading the IOPACK first under QDOS. Remove
the QDOS system disk and restart P2 ONLY. P1 will continue
executing the IOPACK while P2 will be ready to boot the other
operating system.

QASAR Users Manual- December, 198¢ Page 21

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.2 Keyboard

The keyboard behaviour remains unchanged. The transfer
location (KXFERPT at $FE2A) when non-zero, has the next
pending keyboard character ready for P2 to pick up.The Status
Flag (STFLAG at $FE14) is set immediately to indicate that a

break or speclal control code has bYeen typed at the
keyboard. It is cleared when any other character is typed.

3.3 Line Printer

A large printer queue is maintained. Spaces are
compressed when queued. The printer is checked for status.
Automatic motor control is maintained for some printers such
as the Teletype Model 42. These will bde powered down about 4
seconds after the last character is sent to them.

3.4 Video Screen

The screen responds to:

Characters - which are printed.
Escape sequences - whicbh are executed.
Control codes - such as CR, LF and FF.

The IOPACK maintains a graphics pen, and two cursors. All may
be used independently.

QASAR Users Manual- December, 1984 Page 22

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.5 Character output

In general, characters sent to the screen tehave as
expected and appear at the current cursor position. The only
times that they are not printed are when they are part of an
eéscape sequence, or character output has been suppressed.

Characters are 5 x 8 dot matrices with the bottom 1line
reserved for the underline cursor. They are Justified to the
bottom left cormer of a character cell which is 14nitialised
to be 6 dots wide dy 8 dots high.

Screen output normally goes to the bottom line of the
display, which sorolls upward.

3.6 Escape sequences

Escape sequences are sent to the IOPACK system via the normal
console character output routines, that is system calls or
ROM calls from Assembler programs, or PRINT statements in
BASIC.

Whenever an ESC character ($1B) is sent to the screen,
then all characters up to and including the next carriage
return and 1line feed, are 1interpreted as commands to the
IOPACK. Multiple commands may be seat on the one 1line: with
an ESC preceding each. Invalid commands and parameters are
ignored.

Commands take the form of a two letter code followed by
a variable number of signed decimal integers. Plus signs are
not required. Delimiters are required only where there is
amtiguity. The minus sign of a second parameter is a good
enough delimiter from the first. Valid delimiters are spaces
and commas. Spaces (if any) may separate the command from its
first parameter. Thereafter spaces and commas are allowed
between parameters. All other characters will terminate
parsing prematurely.

For example, the following are all equivalent:

PA %0,-80 PA 50-80
PAS0-80 PA Se -80

3.7 Pen versus cursor

It will quickly become apparent to the user of escape
sequences . that the screen actually has two independent modes
of operation: graphics and character. Graphics output 1is
drawn by a “pen’. This should not be corfused with the
light-pen. Character output occurs at a “cursor’. These terms
will be used throughout the following sections.

QASAR Users Manual- December, 1980 Page 23

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.8 Commands bdy group

3.9 Screen colour

BC n Set background colour
IN Invert screen image

The QASAR graphics display 1is green-on-black, so the
word colour in this context is actually reference to the
Pit pattern written to the screen. The result of differnt

colours 1is therefore a shading effect.

The screen background colour is defired by an 8-bit
binary number called the background mask. The BC command is
used to assign a value (bit pattern) to the mask. Clear bits
are black. Set bits are green. When a Formfeed (30C) is sent,
then the mask is written out to every byte of the graphics
RAM, which is in turn displayed on the screen. The action is
that of clearing the screen &nd initialising it to a

colour . If the background mask is $0@ then the screen will
be all black. If the colour set is -1 (mask = $FF), then the
screen will be all green. Intermediate values result in
stipprling across the screen.

Most marks made by the cursor and pen will te writtenm to
contrast with the background colour. Characters will te green
on a black background until the background mask is inverted
($6@ --> $FF) when they will become tlack on a green
tackground. Similarly, if the pen colour is non-zero, it will
always make a visible mark. The Pen colour mask is exclusive

OR‘ed with the background mask before being written to the
screen.

The 1IN command inverts every every bit or the screen as
well as the backeround mask.
Defaults: n = @

BC - sets the tackground to black.

QASAR Users Manual- Decemter, 1982 Fage 24

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.12 Graphics group

The pen is one dot highk and wide and may e moved around
the screen at will. The screen is 256 dot positions high by
512 wide. All co-ordinates are specified in X,Y form where
2,0 is the rottom left corner of the screen.

8,252 : 511,255
obo . e s 00 e e 0000000000 0 L) o.o'--
;. @0 0000000 e0 00000000 00 e oo v oo o cé

g'g 511'0

Co-ordinates which pass screem boundaries will wrap
around.

The pen may be dragged across an area of screen
(PLOTTING) 1leaving a mark tehind 4t if the pen ~olour is
non-zero. Alternately the pen may be lifted and MOVEL to a
new position. Finally, the ren ray be dabbed quickly against
the screen to plot a single dot.

Provision is made to drive the pen wusing abdsolute or
relative co-ordinates. An offset register is also maintained
ard 1s added, within the IOPACXK, to every adbsolute parameter
recelved. Take the case of the move commands:

MA x,y - Move absolute newpos
MR x,¥ - Move relative newpos

offset plus (x,y)
oldpos plus (x,y)

QASAR Users Manual- December, 1589 Page = 258

o AR P B R

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.10.1 Pen colour
3.18.2 PC n - Set pen colour.

Pen mask 1is loaded with the 8-bit 2°s complement value
of n. The pen mask is exclusive OR‘ed with the background
mask before being written to the screen. n=-1 sets all &=bits
($FF) and so what is written will always be the opposite of
the ©background colour, that is it will contrast. n=0 will
draw lines the same colour as the ©background - good for
erasing selectively. Intermediate values will give 8-dot
repeating patterning along the horizontals.

Default: n=-1

PC - switches pen ‘on’, will always make a mark.
3.10.3 O0ffset register

3.12.4 OF x,y - Set offset to x,y
3.10.5 OR x,y - Add x,y to offset.

The offset may be loaded with a specified value or
changed by a specified amount. The new value of the offset is
then added to all absolute co-ordinates specified by
sutsequent graphics commands.

Defaults: x,y = 0,0
OF - Clear offset register
OR - No effect.

3.10.6 Move pen

3.10.7 MA x,y - Move pen absolute.
53.10.8 MR x,y - Move pen relative.

Move pen to a new position, leave no marks. Eouivalent
to lifting the pen before moving.
Defaults: x,y = 0,0

MA - Move to current value of offset register.
MR - No action.

QASAR Users Manual- Lecember, 1983 Fage 2€

Section 3: QASAR GRAPHEICS / LIGHT-PEN SYSTEM

3.10.9 Vector plot

3.10.19 PA x,y - Plot absolute.
3.10.11 PR x,y - Plot relative.

Plot a vector from current position to new position
specified. A vector, as straight as possible, is drawn. The
action 1s not commutative. A vector between the same two
points but drawn in the opposite direct will not exactly
overwrite the original.

Defaults: x,y = 0,0
PA - Draw a vector to current value of offset.
FR - Plot a dot at current pen position.

3.10.12 Cot (point) plotting
3.10.13 DA x,y - Plot a dot atsolute.
3.10.14 DR x,y - Plot a dot relative.
Plot a single dot at the position specified. Then ren is
moved before plotting.
Lefaults: x,y = ¢,0

DA - Plot a dot at current value of offset reglister.
LR - Plot a dot at current pen position.

QASAR Users Manual- December, 1380 Page 27

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.11 Character group

Characters are 5 x & dot matrices. Tre bottom line of
the matrix is reserved for the wunderline cursor. Each
character 1is printed at the current cursor positicn in a
character cell whose size may bYe varied The character
patterm 1s ©butted against the bdottom 1left corner of the
character cell. Tefault character cell size is € dots wide by
8 dots high.

All cursor rco-ordinates are specified by line numter and
character position along the line. These co-ordinates will
refer to different locations on the screen if the character
cell size is changed. Line 1, character 1 is the character
cell butted up to the top left corner of the screen and is
the reference point.

The bottom left character cell on the screen may not
always sit on the physical bottom line, and yet that is where
screen output is often desired to be sent. Therefore, line @,
character @ 1is an artificial co-ordinate to reference that
location.

The screen may bYe split 1into a scrolling area,
relatively 1loosely controlled, extending up from the bottom
and a fixed non-scrolling area extending from the top down.
The cursor address reference is at the top for this reason.
I/0 fields would usually be defined in this area.

Character output may bYe switched off to suppress
keyboard echo. The underline cursor can also be suppressed.

Finally there are two banks of cursor control registers
which contain the following information: :

Cursor position

Cursor mode

Character cell size

Protected field info. (if any!

These may be swapped at any time by sending a SYN
character (cntl V or $16). Two independent cursors may be
maintained. The swapping is transparent to IOPACX commands
which will reference whichever bank is current.

A useful application is the setting aside of a special
area for error messages to go. The messages need only %Ye
preceded by and finish with a SYN character. Iritially, the
alternate bank is set to a pseudo-protected field on the
bottom line of the picture, with tre cursor suppressed.

QASAR Users Manual- December, 198¢ Fage 28

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.11.1 Cursor Mode
3.11.2 CU n - Set cursor mode.

This 1s a cursor control command. Subsequent cursor
behkaviour is:

n==1 : no character output or cursor.

n=@ : characters will print, cursor suppressed.

n=1l : both characters and cursor on. (normal operation)
Default: n=9

CU - cursor off, characters will still print.

5.11.3 Cursor movement

3.11.4 MC 1,c = Move cursor to line,column.
3.11.5 CP = Move cursor to pen position.

MC moves the cursor to the 1line and character position
specified. The exact physical screen location depends on the
current character cell size.

CP links the cursor to the graphics pen without reference to
line and character position boundaries. This facilitates the
labelling of graphs. The next character printed will rest

with 1its ‘tottom 1left dot at the graph pen position at the
time this command was received.

Defaults: 1,c = 2,0

MC - Resets the cursor to butt into the bottcm left corner of
the screen.

QASAR Users Manual- December, 1980 Page =~ 29

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.12 Scrolling area

3.12.1 TS 1 - Set top of scroll

The scrolling area is set up to and including the 1line
specified by 1. Thus this command is wused to split (and
restore) the screen.

When split, the scrolling area is software scrolled and,
if a significant size, may scroll quite slowly. It is best to
keep the scrolling area to the minimum required.

Whole screen scrolling is accomplished by hardware and
is therefore fast.

Default:
TS - Sets the whole screen to scroll.

3.13 Protected Fields

3.13.1 PF line,char,len - Tefine a field.
3.13.2 GF field - Move cursor to a field.

Fields are defined by position and 1lenstk. The cursor
may be moved into them and special limits on its movement
apply. Character output then proceeds as normal. These areas
may be used for I/C or be labtelled and referenced by the
light-pen.

PF enters the parameters supplied into a field tatle within
the IOPACK. 256 such entries are allowed. The field table is
sorted on line, character position and order of entry (where
there are two more entries for the same position). i
Field numbering then 41is from the top down and left to
right across the screen.
<F1> < F 27

<F 3>
<F 4>

Field number 1 1s the first entry in the field table.
The information remains until a Formfeed is received by

the IOPACK. This not only clears the screen but purees the
field tabdle.

Bad parameters in a PF command result in no entry ‘teing
made to the table. PF’s are ignored if the table is full.

GF moves the cursor to the first character pcsition of the

QASAR Users Manual- December, 1989 Page 3¢

Section 3: QASAR GRAPHICS / LIGET-PEN SYSTEM

specified field. From then on, a new set of rules avply to
cursor movement. The only way to leave the field is via
another GF command, an MC command or by the SYN control code.
A second SYN will return the cursor to the field it came from
with all the original 1imits on movement.

Should there te no entry in the field table for the
field number specified, then the cursor is not affected in
any way.

Defaults : all parameters = ¢

PF - No action, bad parameters.
GF - No action, invalid field number.

3.14 Light pen group

Light pen commands are requests to the IOPACK to return
the current position and/or status of the light-pen. One or
two decimal numbers are sent back as though typed by a
pPhantom hand on the console keyboard. In BASIC. for example,
the user prints a 'light-pen command to the screen and then
immediately should execute an INPUT statement for the
expected number of numeric variables. The phantom hand has

the ability to jump the keyboard queue and stay ahead of any
waiting keyboard characters.

Care should be taken to maetck each ligkt-pen command
sent with an input request otherwise the IOPACK responses
will be nested in an unexpected fashionl!

3.14.1 Tight-pen commands

3.14.2 L6 m - Return position in form x,Y.

3.14.2 LC m - Return line,char. position

3.14.4 LF m - Return a field number.

m 1s a mode control parameter. Currently, modes are:

m=@ : don’t wait for hit. Return -1’s if nc¢ hit.
m=1 : wait for hit.

Field numbers returned by LF after a hit may be @ or a
valid fleld number. @ (an invalid field number) indicates
that a hit occurred but outside any defined fields.

Pefaults: m=0

LG,LC,LF - Return co-ordinates if any, don’t wait for hit.

QASAR Users Manual- December, 1S52¢ Fage =~ 31

2
i

i -
\

' Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

3.15 Defaults

Pefaults are applied when parameters are missing in a
command. Thus:

MC 1s interpreted as MC 4,0
PA as PA 02,0
CS as CcsS 6,8

Most defaults are @ except where noted. Generally
missing arguments (i.e. the command alone) are used in a
‘reset sense. For example, <ESCDMCKCR> will restore the
cursor to the bottom left corner. <ESCPTS<CH> will restore
whole page scrolling. Some arguments {e.g. ‘colour’
registers) are processed to 8 bits. Unused Ligh ©bits are
ignored.

QASAR Users Manual- Tecember, 1589 Fage 32

Section 3: QASAR GRAPHICS / LIGHT-PEN SYSTEM

2.16 Screen Control Codes

The screen will respond to:
CR -(30D,<return>) Return to beginning of line (or field).
LF -(%0A,<crtl J>) Ignored in fields, else three cases:

1. Atove top of scroll - ignored.
2. Below top of scroll - Move down 1 char.
3. At bottom of screen - Case 2. plus scroll.

BS -($08,<cntl E>) Non-destructive move 1left. Limit at
beginning of line (or field).

HT -($8S,<cntl I>) Non-destructive move right. Limit at end
of line (or field).

VT -($0B,<cntl KX>) Move up one character. Limit at top of
screen.

FF -($6C,<cntl 1>) Clear screen (overwrite with specified
background colour). Purge field table and reset cursor
position to bottom left corner.

ESC -($1B,<esc>) Interpret subsequent characters as graphics
commands up to and including <cr> and optional <1f).

SYN =-(51B,<cntl V>) Swap current cursor zontrol registers
with alternate set. Used to guarantee display of asynchronous
error messages (e.g. PRINTER NOT READY). such messages should
start and finish with SYN (CNTL V or $1€).

N.B. If the cursor is moved to a protected field (by GF
command) then all control codes are ignored except for CR,SYN
ard BS. ESC is still processed or there would be no escape !!

QASAR Users Manual- Cecember, 19880 Page -~ 33

Section 3: QASAR GRAPEICS / LIGHT-PEN SYSTEM

3.17 Graphics Command Summary

BC
IN

PC
OF
OR

n

n

X,y
X,Y
X,y
X,y
X,y
X,y
X,y
X,y

X,y
m

l,c- move cursor to line(l), column (c¢).

l,c,n- Protect field of length n at 1,c

n

m
m
m

- set background
- invert screen.

- set pen colour.
- set offset to x,y.
- change offset by x,y.
- move absolute.
move relative.
Plot absolute.
plot relative.
dot absolute.
dot relative.

- set character cell size.
- set cursor mode.

- move cursor to pen.

- move cursor into field n.

- light-pen : return grarhics co-ordinates.
- cursor co-ordinates.

- field number.

QASAR Users Manual- December, 1980

Page

34

Section 3: QASAR GRAFHICS / LIGET-PEN SYSTEM

3.18 Examples of Use of Graphics

S.19 QASAR Compiler Basic

This sample program illustrates the ease with which the
graphics screen may be driven and the light-pen interfaced.

DIM ESC$/:1B/,FF$/:0C/
DIM X,Y,LINE,CBAR,FIETD

PRINT ESC$;“BC-1° \! SET SCREEN TO WHITE
PRINT FF$ \! AND CLEAR IT

! NOW SET UP A COMMAND FIELD ON THE SCREEN
PRINT ESCS; ‘PF’;31;10;4

PRINT ESC$;°GF1” \l MOVE THE CURSCR TO IT
PRINT “QUIT’ \! AND TABET IT

! RESET THE CURSOR POSITION AND TURN OFF CHARACTERS.
PRINT ESCS$; “MC 3ESCS; ‘CU-1"

201 LOOP FOR GETTING AND PROCESSING LIGHTPEN HITS
GOSUB 100 \! GET A HIT

IF FIELD=1 THEN STOP \! IT WAS A HIT IN THE ’QUIT’ FIELD
PROCESS X,Y HERE

GOTO 29

100! GET A LIGHT PEN HIT

PRINT ESC$;"1G61° \! MCDE 1 - WAIT FCR EIT
INPUT X,Y \l GET BACK CO-ORDINATES
PRINT ESCS$; ‘LF’ \! QUICKLY POLL IN FIELD MOLEX
INPUT FIELL \! AND GET BACK ANY FIELD NO
RETURN

QASAR Users Manual- December, 1982 Page 35

Section 4: QASAR ROM SUBROUTINES

-SECTION 4-

4.0 QASAE ROM SUEBROUTINES

The QASAR ROMs contain the DPebug Monitor and routines
for peripheral I/0 and floppy disk operations. Table 4-1
lists tke available routines. Except as stated in the
following descriptions, all of these are subroutines and end
with an RTS 1instruction. They may bYe called from user
programs by setting up the appropriate registers or RAM
locations for parameter Passing and executing a JSR or JMP to
the required entry point.

TABLE 4-1. QASAR ROM routines
NAME ADDRESS FUNCTION

COMMON MONITOR ROM AT &4F2@e@
STARV ¥o920 monitor start and entry point
STENV Foo3 request input of start and end addresses
CONHV Fooe6 convert an ASCII hex digit to 4-tit binary
CHXLV Fo0S convert MS 4-bits to ASCII hex
CHXRV FooC convert LS 4-bits to ASCII hex
INATY Foor input 1€-tits as up to 4 hex digits
IPCNYV Fo15 input a character, no Parity, with echo
OPCHYV Fo18 display a charecter on console screen
OP2HV FO1B display one bdyte as £ hex chars, <{spcd>
OP4HY Fo1E display two bytes as 4 hex chars, <spc»
PCLFV Fe21 display <1f>, <cry, (nulls as required)
PCLSV F@24 display <1f>, <crd>, (nulls), string GX
PRNSV Fo27 display string @X
PSPCV F@2A display <spe>
PRNUL Fo2C display ASCII null
OPBYT Fgar display a character witkout nulls

COMMON I/0 ROM AT &¢F400)
VBOOT F7D6 reset entire I1/0, display boot message
LIST F?7DC output one character to line printer
LINS F7DF output string GX to line printer
LINSC F7E2 output <cr><1f>, string GX to line printer
VIORST TF7ES5 reset the entire peripheral I/C system
VRESET F7F4 clear console screen, reset current pos

PROCESSOR 1 UNIQUE START-UP RCM AT srsee
EXREST Fs02 reset time-of-day clock
EXROUT F8@3 update time-of-day clock

PROCESSOR 2 UNIQUE DISX ROM AT $Feao
OSLOAL F8ge boot load QLOS from drive @
FDINIT F&@23 initialise disk controller electronics
READSC F896 read full last sector

QASAR Users Manual- December, 1980 | Page 3

[0}

Section 4:

READPS
RICRC
RWTEST
RESTOR
SEEK
WRTEST
WRDDAM
WRVERF
WRITSC
CHKERR
PRNTER

F80A
FeeD
Fg81e
F813
Fg81e
F819
F81c
Fe1iF
Fg22
F825
F82¢

QASAR ROM SUBROUTINES

read (specified) partial last sector
read disk and check valid CKCs only
write test and read with CRC verify
restore head to track @ and 1ift

seek to specified track

write test (no read back check)

write "deleted data” marks

write sectors, read back and check CRCs
write sectors only (no verify)

error check and error message handler
error code printout handler

4.1 Peripheral 1/0 Functions

These routines may be called by processor 2 only. They
access the peripheral devices directly but move data
in and out of queues whiech are maintained by processor 1.

do not

NAME
STARV

STENV

CONHYV

CHXLV

ADDRESS -

Fooo

Fo03

Foee6

Foo9

FUNCTION
This entry point initialises the debus
package and peripherals from a restart or
bower up condition. Control is not returned
to the calling program, bdbut is given to tre
debug package command input routine. This
call should be made with a JMP.,

This entry point requests input of Beginning
and Ending Addresses in hexadecimal. If the
ending address is not larger than the
beginning address, the operator prompt 1is
repeated. The result is placed in locations
SFFD9 (16-bit Beginnin Address) and 4FFDB
(16-bit Ending Address). The contents of the
A, B, and X registers are destroyed by this
call.

This entry point converts g hexadecimal
character in acc A to a 4-bit ‘tinary number
and stores the result in acc A. The hi-order
4 bits are cleared angd the N condition code
i1s =zleared to flag success. If an invalid
character is supplied as 1input (i.e. not
@ -9 or "A"-"F") then acc A is not changed
and the N condition code is set to 1 to flaz
failure. The B and X registers are
preserved.

This entry point converts the most
significant 4 bits of ace A to an ASCII coded
hexadecimal digit character and stores it in
acc A. The B and X registers are preserved.

QASAR Users Manual- December, 1982 Page 37

|
|
|
|
|
i
|
i
|

CHXRV

INADV

IPCNV

OPCHV

OPZHV

OP4HV

Section 4:

Fooec

FeoF

Fo15

Foi18

FO1B

Fo1E

QASAR RCM SUBROUTINES

This entry point converts the least
significant 4 bits of acc A to an ASCII coded
hexadecimal digit character and stores it in
acc A. The B and X registers are preserved.

This entry point inputs up to 4 hexadecimal
characters from the console keytoard queue
and converts them to a 16-bit binary address.
The most significant 8 bits will be stored
into the memory location specified by the
index register. The least significant 8 bits
will te stored into the next higher memory
location. The subroutine returns to the
calling program when an invalid character is
entered. The contents of acc A and acc B are
destroyed. The index register is not changed.

This entry point removes one character from
the console keyboard queue, clears the
hi-order (parity) bdit, and stores the
character in acc A. There is a NC ECHO

flag (AECHO) at $FFC9. It must te set to
non-zero before each call to INCHV for each
character that is not to bYe ectoed to the
console screen. INCHV returns with AECHO
clear and the B and X registers are
preserved.

This entry point outputs one rcharacter
contained in acc A and the required number of
nulls to the console screen queue. The
contents of acc A, acc B and the index
register are preserved.

This entry point converts one 8-bit tinary
byte at the address specified by the 1index
register to two hexadecimal characters and
outputs them followed by a space character to
the console screen queue. On exit, acc A
contains the last character output (a space),
the index register is irncremerted by ore, and
the B accumulator is unchanged

This entry point converts two consecutive
8-bit ©binary bytes startirg at the address
specified by the 1index register to four
hexadecimal characters and outputs them
followed by a space character to the console
screen queue. Orn exit, acc A contains the
last character output (a space), the index
register 1is incremented by two, and the B
accumulator is unchanged.

QASAR Users Manual- December, 1980 Page 38

Section 4:

PCLFV

PCLSV

PRNSYV

PSPCV

PRNUL

OPBYT

VBOOT

Fg21

Fg24

Foz27

Fo2A

FozC

Fozr

F7T6

QASAR ROM SUBROUTINES

This entry point outputs a carriage return, a
line feed, and a null ctaracter to the
console screen queue. On exit, ace A
contairs a null character {(4). The B and X
registers are preserved.

This entry point outputs a carrliage return, a
line feed, and a user specified string of
data characters to the console screen queue.
The character strirg must start at the
address contaired in the index register and
end with an EOT character ($@4). On exit the
index register contains the address of the
EOQOT character, acc A contains the EOT
character, and acc B is unchanged.

This entry point outputs a wuser specified
string of characters to the console screen
queue. The character string must start at
the address contained in the index register
and end with an EOT character (%04). On exit
the index register contains the address of
the EOT character, acc A contains the EOT
character, and acc B is unchanged.

This entry roint outputs a space character to
tke console screen queue. On exit, acc A
contains a space character. The B and X
registers are preserved.

This entry point outputs a null character to
the console screen queue. On exit, anc A
contains a null character (@). The B and Y
registers are preserved.

This entry point outputs the character
contained in acc A to the ~console screep
queue with no added nulls. The sontents of
acc A, acc B and the 1index register are
preserved.

This entry point resets the entire peripheral
I/C system and prints the boot message (LOAD
SYSTEM DISK IN DRIVE €"). Control is returned
to the calling program.

GASAR Users Manual- December, 1989 Faze -39

Section 4:

LIST F7DC

L
LINS F7?DF
LINSC F7E2
/ VIORST F7ES
e
VRESET F7F4
|
|
.

QASAR ROM SUBROUTINES

This entry point sends the contents of the A
accumulator to the 1line printer. If tke
paper empty or printer not selected
status condition 1is detected, the message
"PRINTER NOT REACY” will be output to the
console screen and the routine will wait in a
loop until the condition is rectified and the
character can be sent. The "“PRINTER NCT
READY message will then te zleared from the
screen before returning to the «calling

program.

This entry roint sends a character string to
the 1line printer. The string is pointed to
by the X register and must be terminated with
an EOT ($04). If a printer error is detected
by LINS 1t will display the PRINTER NOT
READY" message on the console screen and wait
in a loop until abgorted or until the error is
corrected. The PRINTER NOT REALY message
will te cleared from the screen tefore
returning to the calling prosgram.

This entry point performs the same function
as LINS with the exception that prior to
printing the string, a carriage return and a
line feed are sent to the printer.

This entry point resets the entire peripheral
I/0 system and returns tc the calling
program,

This entry point clears the console video

screen and resets the cursor to the bottom
left hand corner.

QASAR Users Manual- December, 19280 Page 42

Section 4: QASAR ROM SUBROUTINES

4.2 PROCESSOR 1 SPECIAL ROUTINES

In normal operation the Pl-unique ROM 1is executed
periodically to maintain certain timers and service the I/0
functions. For special applications the following functions
may be exploited by the user program:

4.2.1 Time-of-day clock

= — ——— — — - = - —— — — —— —

This <clock 1is driven by a signal derived from the CPU
clock crystal oscillator. As this is subject to long term
drift, consideration should be given to accuracy requirements
when using it for <critical timirg applications. Typical
accuracy in in the order of a minute or two per day.

As explained 1in section 1.2, user programs running in
processor 1 may update the time-of-day clock by direct calls
to processor 1°s wunique ROM. Two subroutine entry voints,
EXROUT and EXREST, are defined for this purpose.

EXROUT (entry point $F803) maintains a twelve-hour clock
in an 8-character ASCII string called TIME, at locations
SFEEQ to $FEET7. The format of this string is HH :MM<sp>XM ,
where EH is the hours reading, MM is the minutes reading, and
XM is either AM or PM.

The TIME string is updated once per Tinutg provided
EXROUT 1s called at least once every clock "tick” (every 15
ms minimum). Whenever a minute has been ~ounted EXROUT
stores a space character in place of the colon between the HH
and MM fields. This is detected on the next call to EXROUT
(about 15 ms later), which responds ty resetting an internal
seconds counter (at location $FE7@), incrementing minutes,
hours and AM/PM fields as necessary, and replacing the colon
in the strineg.

The TIME string may be read through either processor.
It should check that the colon is present to verify trat the
reading is statle. The TIME string may te initialised
externally by first ensuring that EXROUT is called with a
space in rlace of the colon, to reset the internal seconds
counter, then storing the correct time in -the ASCII string.

An 8-character TATE string is also defined at locations
$FEE8 to SFE6F. This is for external use only and 1is not
maintained by EXROUT.

EXREST (entry point $F820) is a reset routine which is
automatically executed on power-up or when the entire I/0
system 1s to be reset. It initialises the PIA to receive
time-of-day clock ticks and checks that the colon and "M" are
present in the TIME string. If either is not, the string is
set to ©0:00 AM and the TATE string is set to 2-0¢-00 .
This means that the TIME will not be lost by operating thre

Restart bdbutton, tut it will te initialised after a vower-on
restart.

QASAR Users Manual- December, 1982 Page 41

Section 4: QASAR ROM SUBROUTINES

4.2.2 User Timer

The processor 1 clock routires also service a numter of
software timers for various system functions. One of these
timers 1s reserved for wuse by the user program. Thig is a
byte at $FE34 which is automatically decremented every clock
tick , which occurs about once every 15 milliseconds, until
it reaches zero.

4.2.3 Keyboard Character Flag

It is sometimes desiratle to be able to check if a
character has arrived from the ACIA so that program control
can te transfered accordingly. For this purpose tte Keytoard
Character Transfer Port can te read. This is a tyte at $FE2A
which is clear unless there is a character waiting, in which
case the character can %te fetched via the normal :zonsole
input routines.

QASAR Users Manual- December, 1988 Page 42

Section 4:

QASAR ROM SUBROUTINES

4.3 Floppy Disk Controller Subroutines

The floppy disk controller module firmware 1is used to
all of the diskette hardware functions. Parameters
required by the firmware functions are stored in RAM in the
locations descrived in the following table:

control

NAME
CURDRV

STRSCT

NUMSCT

LSCTLN

CURADR

FDSTAT

OASAR Users Manual- December, 19890 Page = 432

ADDRESS
$0000

$0001

$0003

$0005

$0006

$0008

DEFINITION
This ©byte contains the binary logical unit
number of the drive to bYe selected (zero
through three).

These two bytes contain the physical sector
number of the first sector to te used
(starting sector).

These two bytes contain the number of sectors
to be used. This number includes a partial
sector, 1f a ©partial sector read is being
requested. The sum of STRSCT and NUMSCT
cannot be greater than $7D2 (single-sided
diskettes) or $FAZ (double-sided diskettes).

This byte contains the number of bytes to be
read from the 1last sector during a read
operation. This number should te a multiple
of eight and cannot ©be greater than 128
($82). If a numter is specified that is not
a multiple of eight, the next larger multiple
of eight bytes will bte read.

These two bdytes contain the first address 1in
memory that 1is to be used during a read or
write operation. This location 1is wupdated
after each sector is read or written. Durine
write test operations, these two bytes
contain thre address of a two-byte data
buffer.

This byte contains a status indication of the
performed function. If an error occurred
during a diskette operation, the carry tit in
the <condition code register will be set to
one upon returning to the <calling program.
In addition, FDSTAT will contain a number
indicating the error type (431 - $39). These
errors are explained 1in detail in the QDOS
User ‘s Guide. If no error occurs, ~then the
carry bit of the condition code register will
te set to zero and FDSTAT will contain the
value $30.

|

|

I
|
i
|
|
|

Section 4: QASAR ROM SUBROUTINES

For all of the firmware entry poirts descrited bdelow,
the contents of the registers is unspecified both upon entry
and exit from the routine. Each entry point is accessed by
executing a JSR or JMP instruction and returns via an RTS.
The parameters must have been set up in RAM as indicated for
each specific function.

NAME ADDRESS FUNCTION

OSLOAD TF80o9 This entry point initialises the drive
electronics and loads the Boottlock arnd QDOS
retrieval information block from the diskette
in drive zero. The bootdblock 1is given
control after it has been 1loaded from the
diskette. It, in turn, causes the rest of
the operating system to be loaded into
memory. No parameters are required for this
entry point. This function does not return
control to the calling program. If an error
occurs during the Bootblock load process, the
error numter will te displayed on the zonsole
screen and control ©passed to the resident
debug monitor. At least $12¢ tytes of memory
are required startineg at location zero. If
less memory exists, the Bootblock program may
not be able to display an error message
indicating that there is insufficient memory
in the system.

FDINIT F803 This entry point 1initialises the diskette
controller only.

CHKERR F825 This entry voint 1is wused to check for a
diskette controller error it called
immediately after returning from anotker ROM
entry point. The routine will <cherk the
state of the carry flag in the condition code
register. If the carry flag is set to zero,
the CHKERR routine will simply return to the
calling program. if the carry flag is set to
one (an error “occurred), then the routine
will print an "E” followed by the contents of
FDSTAT and two spaces on the console srreen.
Control is given to the resident debug
monitor after printing the error message.
CHKERR does not change any of the pararmeters.

PRNTER F82C This entry point will print an "2" followed
by the contents of FDSTAT followed by two
spaces on the console screen. PRNTEF does
not change any of the parameters.

QASAR Users Manual- December, 1980 Page 44

Section 4:

REALSC F806

READPS TF8@A

RDCRC F80D

RWTEST Fe1g

RESTOR 7F813

SEEK Feis

WRTEST F81¢9

QASAR ROM SUBROUTINES

This entry point causes the number of sectors
contained in NUMSCT bVYeginning with STRSCT
from CURDRV to be read into memory starting
at the address contained in CURADR. CURADR
is wupdated to the next address that is to be
written into after each sector is read. The
parameter LSCTLN is automatically set to 128
(380) so that a complete sector is read 1into
memory when the 1last sector is processed.
The parameters CURLRV, STRSCT, and NUMSCT are
not changed. FDSTAT will contain the status
of the read operation.

This entry point is similar to REALDSC with
the exception that the last sector is only
partlally read according to the contents of
LSCTLN. If LSCTLN contains 128 (%8@), then
this entry point is identical to READSC. The
restrictions placed on LSCTLN are described
in the preceding table of the parameters.

This entry roint causes tke numter of sectors
contained in NUMSCT ‘beginning with STRSCT
from CURDRV to be read to check their CRCs.
The zontents of the sectors are not read irto
memory. The only parameter changed is
FDSTAT.

This entry point causes the two tytes located
at the address (and at address + 1) cortained
in CURADR to te written 1irto alternatines
bytes of NUMSCT sectors beginning with STRSCT
of CURDRV. After NUMSCT sectors are written
in this fashion, they are read back to verify
their CRCs. The only parameter changed is
FDSTAT.

This entry point causes the read/write head
of CURDRV to te positioned to cylinder ZERC.
The only parameter required is CURDRV. The
only parameter changed is FDSTAT.

This entry point causes the read/write head
of CURTRV to be rositioned to the cylinder
containing STRSCT. The only parameter
changed is FDSTAT.

This entry point causes the two bytes of data
located at the address (and at address + 1)
contained in CURADR to be written into
alternating bytes of NUMSCT sectors beginning
with STRSCT of CURDRV. The only parameter
changed is FDSTAT.

QASAR Users Manual- December, 1989 Page 45

Section 4: QASAR ROM SUBROUTINES

WRDDAM F81C This entry voint causes a deleted data mark
to be written to NUMSCT sectors Yeginning
with STRSCT of CURLCRV. The only parameter
changed is FDSTST.

WRVERF F81F This entry point causes NUMSCT sectors
beginning at STRSCT of CURDRV to be written
from memory starting at the address contained
in CURADR. CURADR is updated to the address
of the next byte to be read from memory after
each sector 1is written. After all sectors
have been written to the diskette, they are
read tack to verify their CRCs as checked by
the routine RDCKC. The only parameters
changed are CURADR and FLSTAT.

WRITSC 7Fgz22 This entry point is identical to WRVERF with
the exception that the written sectors are
not read back to verify their CRCs. The only
parameters changed are CURADR and FDSTAT.

When an error occurs, the physical sector number at

which the error occurred can be computed from the following
relationship:

PSN = STRSCT + NUMSCT - SCTCNT -1
where PSN is the physical sector number at which the error

occurred, and SCTCNT is a two-byte value zontained 1in
locations $000B-200C.

QASAR Users Manual- Decemdber, 1980 Page 4€

Section 5: DEBUG MONITOR PROGHAM

-SECTION 5-

5.0 DEBUG MONITOR PROGRAM (MONTR)

MONTR is a system program which serves as a user console
driver, and as an aid to debugging other programs. The
externally declared functions available are compatible with
those provided by the Motorola programs EXBUG 1.1 and 1.2.
("EXBUG 1is a registered trademark of Motorola corp.)

~ MONS9 is a version of MONTR for the €806. Unless
otherwise stated ©below, all MONTR commands work identically
for MONS. Some additional features are present in MONS to

handle 1long branches and the additional CPU registers of the
6809.

Via the input console, MONTR enables the user to:

-examine or alter the contents of any memory location,
-examine or alter the coantents of any CPU register,
-examine @ an effective address, or offset, with return,
-calculate required branch offsets;

—determine the destination of existing dranch offsets,
-fill a memory range with a specified value,

-establish program execution breakpoints,

-run a user program, setting CPU contents & start address,
-change between MONTR and MONS.

MONTR has thke ability to operate ©bdreakpoints in the
presence of a user SWI trap handler. No interference other
than a moderate speed reduction is occasioned.

MONTR may also be called from the user program, without
the establishment of a dreakpoint. In this case, all
facilities are availadle, including the ability to resume
execution of the calling program.

An NMI interrupt may be wused to call MONTR at any
arbitrary point during execution of the user program. This
i1s achieved ty pressing the console interrupt for processor 2
on a dual 6809 QASAR or for processors 1 and 2 on a ERGO/6E29
system. As in the case of the program call, all of the MONTR
facilities are available, including the ability to resume

execution of the interrupted program from the point of
interruption.

Section 5.9 of this manual contains a command summary
for MONTR.

QASAR Users Manual- Cecember, 158¢ Page 47

Section 5: DEBUG MONITOR PROGRAM

5.1 Command Prompt

When MONTR is started, or has returned to command input
mode, a command prompt will te issued. The command prompt
consists of a colon (:) on the left margin. MONS prompts
with an asterisk (*) on the left margin. With the prompt,
either monitor 1is ready to accept user command inputs from
the console keyboard.

Switching between MONTR and MON9 on a €800/6809 system
may be accomplished by typing M <returnd in response to the
command prompt. The new prompt symbtol then indicates which
monitor is active.

5.2 Opening commands

An open location is one whose contents MONTR has printed
for examination and is then accessible for change. A closed
location 1is no longer accessitle. While a location is open,
the user may enter a new value for the content of that
location.

MONTR accepts several different commands, each havine
the effect of opening a memory 1location. The facilities
offered by the commands differ as required by each function.
These commands are explained in the following sections of
this manual.

Note that in all examples MONTR’s output is underlined.

5.2.1 The Slash, /

One way to open a 1location 1is to type its address,
followed by a slash.

:3F8/24

Location 3F8 (hex) is open, with content of 24, and may
be changed.

Used alone, the slash will reopen the last location
previously open.

:3F8/2A<return)
:/2A

As shown in the example, ar open location may be closed
by the return key (shown as <return}). In this case,
location 3F8 was opened, closed ty <return>, and reopened by
another slash command.

QASAR Users Manual~ December, 196@ Page 48

Section 5: DEBUG MONITOR PROGRAM

5.2.2 The Reverse Slash, \ (shift-I)

Another way to open a location is to type its address
with a reverse slash.

:3F8\2AF9

Note in this example that MONTR has opened a 2-byte
string, containing a 16-bit value. This 2-byte location is
now open for examination and Tossible change as a single
logical unit. This is the significant difference between the
slash and reverse slash commands. The slash opens a single
byte, while the reverse slash opens a 2=-bdyte unit.

This function is particularly suited to examination and
change of address values in memory.

As with the slash, the reverse slash will reopen the
last location open.

:3F§/2A<return

:3F8/24\2AF9

In these examples, 3F8 was opened as a single byte, then
reopened as a 2-byte value.

When a 2-byte sequence is opened, the hish order digits
are taken from (address), and the low order digits are taken
from (address+1). The first address of the pair may be odd
or even, as required. No word boundary effect exists, as
only byte strings are being used.

£.2.3 The Line Feed, <line feed}> (control-J)

If a location is already open, a line feed will oren the
next in sequence.

:3F8/2A<1ine feed)

3FS/F9

also,

:3F8\2AF9<1line feed>

3FA\7B42

QASAR Users Manual- December, 1580 Page 49

|
|
i

Section 5: DEBUG MONITCR PROGRAM

Note that in the reverse slash case, 1line feed
incremented the address by 2. The 1line feed command will
take the next logical unit in sequence, whether 1 byte or 2
byte.

The current location will ©be closed, and optionally
changed if a new value has been entered.

5.2.4 The Up Arrow, <up arrow)> (shift-N)

If a location is already open, an "up arrow ckaracter
will open the previous location in sequence.

:3F9/FS<up arrow)
3F8/2A

also,

:3FA\7B42<up arrow>

3F8\2AF9

This operation is the reverse of the 1line feed. Note
that in the reverse slash case, up arrow subtracted 2 from
the open address value. The up arrow command will take the
previous logical unit in sequence, whether 1 byte or 2 bdyte.

The current 1location will ©be <closed, and optionally
changed if a new value has been entered.

5.2.5 Named Locations, $

Several values are accessed by a name, instead of an
address where the value 1is found. These include the CPU
internal registers, after a breakpoint, and a small number of
MONTR internal facilities.

The required syntar is $C, where C is a single character
which has been assigned a valid meaning as a name. An open
command 1is implied. the requested named value is opened,
using a size of 1 or 2 bytes as required by the data.

After opening, a named value may be examined or charged
as for an addressed location.

QASAR Users Manual- December, 1580 Fage 5@

Section 5: DEBUG MONITOR PROGRAM

Pefined named values are:

$A CPU accumulator A

zB CPU accumulator B

D CPU direct page register (6805 only)
$S CPU Condition Codes

$X CPU Index Register X

$Y CPU index register Y (688S only)

$P CPU Proeram Counter

$6 CPU Stack Pointer §

$U CPU Stack Pointer U (6829 only)

$0 Program Segment Relocation Register
SH User S¥WI Eandler address

$N Terminal Null count.

Some examples of named values are:
t$A 24<return)

t$B 5€6<return>

In these examples, CPU registers A,B., arnd X were
examined, and closed without change, by <return).

5.3 Changing the Contents of a Location

The content of an open 1location may te changed by
entering the new content, followed %ty a modify-and-close
command. Tkese commands are <returnd>, <line feed>, <up
arrow>, <at siend, <right btracket)>, and <left bracket). The
entered new content will be written to memory, and the oven
location closed. After this has occured, any svecific action
due to the command selected will begin.)

If a new content value is entered in error, a control-X
character (produced by holding down the "CTRT” key, while
striking the X key) will abort the change. This must be
done ©before any modify-and-close command is issued. When
control-X is used, the open location will not be modified,
and the commard prompt will be reissued for the next command.

QASAR Users Manual- December, 1588 Page 51

Section 5: DEBUG MONITOR PROGEAM

5.3.1 The Return, <return>

If a location is open, the content may be chansed by
entering a new value, followed dy a <return>. This 1is the
simplest way to close a location. <{Return> produces no
effect other than closing the 1location and optionally
changing the content of the location. ‘

If a new value has not been entered, the open location
is not changed by the <return>.

:12A7/35 7D<return>

$12A7/7T

In this example, location 1247 was opened, and found to
contain 35. A new content of 7D was entered, and the
location was closed by <return.. To check this, 1location
12A7 was reopened, and the content was found to be 7L.

:12A7/7D SA<control X>

:/7D 5B<return>

:12A7/5B

In this example, a mistake was made in the first attempt
to change the location. <Control X> was used to cancel tlre
error. The previously open location (12A7) was reopened, and
the correct new content of 5B was entered. Or opening 1247
again to check, the new content was found to be SB.

:$A FE 55<return>

- - ol am o

54 5%

In this example, a named value (CPU accumulatof A) was
opened. A new content was entered, followed by <return>. On
checking, the new value is now found in $A.

QASAR Users Manual- Decemter, 19&@ Page 82

Section 5: DEBUG MONITOR PROGRAM

5.3.2 Mixed Cpen, Modify and Close commands

MONTR commands may be strung together 4in arbitrary
useful sequences. Those sequences involving open, examine,
optional change and close are among the most common and
useful in operations with MONTR.

Here 1is an example of a typical open and change
sequence.

In this example, a 2 bdyte unit was opened at address
1278. A new 2-byte content was entered, and the location was
closed by <line feedd. {Line feed> also opened the next
2-byte unit in sequence, 1location 1276. Note that MONTR
supplied leading @°s as required.

At location 1276, a new 2-byte content was entered, and
the location was closed by <returnd. MCNTR then 4issued a
command prompt, and waited fgr"a new command .

The new command was "\", whish reopened the last open
location (127€). This location is now seemn to contaln the
new value. An <up arrow)> ther steps banck to the original
location (1274), where the new value is seen.

5.4 Address Sequence Operations

MONTR provides facilities for openirg addresses in
meaningful sequences. An address may be opened indirect
(open a 2-bvyte value, use its content as an address, opern
that address). This 1is wuseful when considering program
addresses in memory, or in going from the stack vointer to
the stack ~ontent.

A facllity exists to follow a branch address to its
destination. A complementary facility exists for a return to
thke start of sequence. These are ready answers to the
gestions “Where does this branch go ?° and "Where was I 7.

The return facility may also be used to facilitate a
second look at a opened sequence from the beginning.

OASAR Users Manusl- December, 1987 Page 52

Section 5: DEBUG MONITCR PROGRAM

8.5.1 The "AT" Symbol, @ (shift-P)

The “at” symbol invokes indirect addressing, using the
: content of the currently open location as an address.

It is required that a 2-byte unit %te open. The open
‘ location is closed, and optionally changed if a new value has
! : been entered. After the optional change, the content is used
i' as an address, which is opened.

145 FFB6E

! FF86\1329

. . 1D this example, the stack pointer was opened, then the
at symtol was used to examine the top two tytes on the
stack.

| :142A\FFFF 1296@ i

1142A\129¢

This example opened location 14ZA, entered a new content
of 1296, closed 142A, and orened 1296. On return tc 1424 the
new content of 12G€ 1s seen.

5.5.2 The Right Angle Bracket, >

The right angle tracket function models the operation of
a branch offset. It is required that a 1-byte urnit te open.
The open location is closed, and optionally changed if a new
value has been entered. After the opticnal change, the
content 1is wused as an effective branch offset on the open
location (address+1). The result of this calculation is used
as an address, and that location is opened.

! $1133/11>

1145/86

In this example, location 1133 was opened, and was found

to contain a branch offset to the instruction at address
1142,

QASAR Users Manual- Lecember, 1589 Page 54

Section 5: LEBUG MONITOR PROGRAM

:1133/11 23>

1157/86<return>

:1133/23

In this example, location 1133 was modified to contain
the value 23. A branch offset of 23 at address 1133 was
found to reach the instruction at address 1157. On reopeninz
address 1133, the new value of 23 could be seen.

MONS provides an additional facility to calculate 1long
branch offsets for the €809. If a 2-btyte unit is open, the
right angle bracket furction uses the value as a long branch
offset from the next location.

*1133\2120>

1255\ BD2F

In this example, location 1133 wés opened and found to
contain a long branch offset to the instructiorn at address
1255.

5.5.Z The Left Angle Bracket,

The left angle bracket commands a returrn to the start of
the current sequence. On entry of slash, reverse slask, at
symbol, or right angle ©bracket, the current address is
stored. The left angle tracket command opens the 1location
defined by the stored address.

This function provides the capability to return tc the
start of sequence, examined by line feed, or up arrow. It is
also possitle to operate using the at symbol, or right angle
bracket (followed by 1line feed or up arrow commands as
desired), and return to the starting point.

The ~urrent location will %bve <closed, and optionally
changed if a new value has beer entered.

:1531/58>
1587/24<1ine feed>

1588/12<

1231/55

In this example, a branch offset at 1531 was followed to
15€7. While there, 1line feed was used to examine the next
location. On seeinsz this, 1left angle bracket was used,
returning to the start of this sequence at address 1531.

QASAR Users Manual- Tecemter, 158¢ Page 55

Section 5: DEBUG MONITOR PROGRAM

12741\ 1144C

1144\2436<up arrow>

In this example, the address at 2741 was followed to
11485, While there, up arrow was used to examine the vprevious
location. Then left angle bdbracket was used, returnirg to the
start of this sequence at address 2741.

:1FEZ/FF 86<1line feed>

1FB3/FF 41<

1FB3/41

In this example, new values were entered at 1FBE2 and
1FB3. Left angle bracket was ther used to return to 1FR2 for
a check of the new values.

MON9 performs the left tracket function in the same way,
regardless of whether a 1long branch or skort branch was
followed.

5.5.4 Branch Cffset Calculation, ;0

A relative branch involves the wuse of an offset
representing the number of bytes forward or backward to the
target address. Wken it is necessary to enter a ‘tranck
address, MONTR will calculate the value required.

To calculate a branch offset from the currently open
byte, enter the target address value, followed by
{semicolon>, 0. The desired offset will be printed out, and
the location reopened for entry.

:1471/FF 1481;0 1F

1471/FF 1F<return)

In this example 1471 was opened, and the offset to 1491
was requested. When the location was reopened, the calculated
offset was entered.

If the requested target address is out of branch range,

MCNTR will reply with R? , and will return a commanad prompt.

QASAR Users Manual- December, 1S80Q Page 56

Section 5: DEBUG MONITOR PROGRAM

:1471/FF 24S1;0 R?

This example illustrates a range error. (2491 cannot be
reached from 1471 with a 1-bdyte tranch offset.)

MONS performs this function in the same way when
calculating short bhranch offsets. However, if a doudle dyte

value is open (using \) MONS will <calculate a 1lone ‘tranch
offset.

£.5 Breakpoint Facilities

MONTR provides ©breakpoint control for user programs.
When a breakpoint is reached, MONTR resains control. While
at the bdreakpoint, all program variables may be examined, or
modified. 1If satisfactory, the rrogram may te permitted to
proceed, or it may be modified and restarted.

MONTR will maintain up to eight breakpoints at the same
time, i1f needed. Assignment and release of a particular
breakpoint 1is automatic, using the ;B and ;D commands.

A1l current %treakpoints may be listed. by using the ;L
command. All current breakpoints may be cleared, by using
the ;C command.

MCNTR uses the SWI instruction as a breakpoint call. A
user SWI handler is permitted, and will run normally while
debugging is in progress. To achieve this, 4H must be loaded
with the user SWI handler entry address. Thre user program
must not reload the SWI vector, or MONTR will lose control.

5.2.1 Setting Breakpoints

To set a breakpoint, enter the desired address, followed
by $B. MONTR will record the requested address as an active
treakpoint. When the wuser program is run under MCNTR, SWI
instructions are inserted in the program at all the active
addresses. Breakpoints must be 1located on instruction
addresses so that the SWIs will be executed. VYote that a
breakpoint cannot be set in RCM using this tecknique.

Up to eisht ©breakpoints may bte active at once. An
attempt to set a further breakpoint after the eight have been
used will be refused, and an error prompt will te issued.

To maintain EXBUG compatitility, it is not possidle to
set a breakpoint at address ©99@9.

$13723 B

In this examrle, a breakpoint was set at address 1372.

QASAR Users Manual- Lecember, 1980 Page 57

Section 5: DEBUG MONITOR PROGRAM

5.5.2 Removing Breakpoints

Breakpoints may be removed in two ways. ¥hen program
execution is interrupted at a treakpoint, that breakpoint may
be deleted dy the ;D command. All existing ©breakpoints may
be cleared at once by the ;C command.

:1249;5B
1243358

$1236;5G

B51243

D

In this example, treakpoints were set at addresses 1249
and 1243. when the program was run, a breakpoint occured at
address 1243, and MONTR regained control. The bdreakroint at
1243 was deleted by the 3L command. The breakpoint at 124S
was not affected by this use of ;D.

5 C

In this example, all treakpoints are removed from the
user program.

5.5.3 Examining Breakpoints

The 5L command will list all eight ©breakpoints. If a
breakpoint is not in use, it will coatain the value €000.

t3L 1249 1243 0000 0000 0000 0000 C003 0000

In this example, breakpoints are recorded as set at
addresses 1249 and 1243. The remaining ‘treakpoints were
unused.

QASAR Users Manual- Decemder, 1980 Page €8

Section 5: DEBUG MONITOR PROGRAM

.6 Running A Program

A user program may be started, or continued from a
breakpoint ty the use of the ;¢ and P commands.

5.6.1 The GO command, ;G

If an address 1is entered, followed by 3G, program
execution will begin at the entered address. Before
starting, the CPU will be loaded with the current values held
under 34, $B, $X, $5, and $S (also $D, 3Y, $U with MON9).

:1000;5G

In this example, a user program was started at address
12009.

:54 23 55<return)

:521;5G

In this example, accumulator A was initialized with the
value hex 55 before starting the user program at location
£21.

5.€.2 The Proceed command, ;P

. Ihe proceed command may only te used after a breakpoint
or "abort (via the console interrupt button).

The effect of P is to continue the interrupted program
from the apparent point of interruption. CPU register
contents may be modified if desirej. If CPU register
contents are modified, program execution will continue with
the new content.

To permit execution of the current instruction, any
treakpoint at the current instruction location is temporarily
removed from the proeram. This breakpoint will not ©bde
reinserted until MONTR regains control from another
treakpoint, an abort, or monitor call.

A single ‘treakpoint in a loop will be executed once
only, then the loop will run to completion. To observe the
progress of a loop, two or more breakpoints must te present
within thke loop.

If only a single breakpoint exists within a program, and
yP is used without inserting another breakpoint, MONTR will
not regain control unless an abort or monitor call occurs.

Bj1264

OASAR Users Manual- December, 1982 Page 59

Section 5: DEBUG MONITOR PROGRAM

3P

In this example, a treakpoint occured at location 126A.
The 3P command was used to continue user program execution.

The ©breakroint at 126A is now inactive, and will remain
inactive until MCNTR regains control via another ©breakpoint,
abort, or monitor call.

By 1264

P

In this example, a loop exists, containing two
breakpoints. The two ©breakpoints will occur alternately
until the loop terminates.

5.7 The FILL command, ;F

The f1l1l command will load memory from a selected start
address up to and including & selected end address. The

value loaded 1is the same in all hytes, and is specified in
the command.

The required command syntax is VV;F, wkere VV is the

sinzle byte hex value to be set into the specified memory :
locations. ’

: 583F
BEG ALDR 1247<return)

In this example, memory 1locations 1247 through 2147

QASAR Users Manual- December, 1984 Page 50

Section £: DEBUG MONITOR PROGRAM

inclusive were set to the value 55.

The default value for VV is @. A memory clear operation
requires only ;F, and desired address range.

The FILL command is not implemented in MON9 but may be
performed from that monitor by first switching to MONTR with
the M command.

5.8 Address Relocation Techniques

When using a relocating assembler and 1linking 1loader,
difficulties often arise in determining pkysical addresses in
memory. Relocatatle assemdly 1listings assume that each
segment begins at address 9000. The linking loader will then
give a linked base address for each segment as loaded. To
find a program address, the listing address must te added to
the linkage base address. If done manually, this addition
process is error prone and very tedious.

MONTR provides a means of operating from the assembled
address value. The base address given from the link
proceedure can be added to the assemtled address by the MONTR
relocation register 40, and the "." command.

A similar facility is provided to simulate the 1indexed
addressing mode. The current index register content can bYe

used to index on an entered address value by the , command.

”

The "." command 1s applied to a previously entered
address value, It has the effect of adding the current
content of the relocation register (40) to the entered value.

To use this facility, first open the relocation
register, and enter the base address of the program segment
required. After this is done, addresses may be entered from

the assembly 1listing, and relocated to the linkage base by
the . command.

:50 1244 364€6<returnd

:141./86<1ine feed)
3768/41

In this example, a segment tase address of 364€ was set
in the relocation register. Using this value as the segment
tase, address 141 plus the base was opened. Tkis was done bty
entering 141, followed by, ..., then followed by the openingz
command. The sequerce 1417, "." was equivalent to directly
entering the sum of 3646 and 141. When line feed was used,
the absolute open address value sould be seen.

QASAR Users Manual- Lecember, 13980 Page 61

Section 5: DEBUG MONITOR PROGRAM

:11.\2742<up arrow>

3655\2213

In this example, the relocation rezister is assumed to
still contain 3646. Using this base address, 11 plus base
was opened, using 11 followed bty . and \". When up
arrow was used, the absolute address could be seen.

The ’ command is applied to a previously entered
value. It has the effect of adding the current content ‘of
the index register (as saved in $X) to the entered value. A4
major use of this facility is to model the indexed addressirg
mode.

:$X 1082<returnd

:11,/29<return>

In this example, the index register contains 1602. An
indexed address byte of value 11 will reach a data value of
29. The actual address referenced will be 1013, or the sum
of $X and the entered value.

Note that this facility is configured for <convienient
operation on 1indexed address operations, during program
operation. The value in %X is in fact the current 1index
value.

Do not arbitrarily alter $X to use this function if a
proceed command is considered, as the original index register
content will be lost.

QASAR Users Manual- Tecember, 1580 Page 62

Section 5: DEBUG:

5.9 MONTR Command

MONITOR PROGRAM

Summary

This 1is

a short
existing in MONTR.

- refer to the appropriate section.

summary of commands and facilities

For a full explanation of any command,

M Switch to other monitor (MONS or MONTR)
AAAA. Relocate address AAAA by Relocation Register 40

B

, Index on the value B with index register $X
AAAA/ Cpen the 1-byte unit at address AAAA

/ Reopen the last open address as a 1-byte unit
AAAA\ Open the 2-byte unit teginning at address AAAA
\ Reopen the last open address as a 2-byte unit

$A Open CPU
$B Open CPU
$D Cpen CPU
$S Open CPU
$X Open CPU
Y Cpen CPU
$P Open CPU
53U Open CPU
$s Open CPU

{return>

accumulator A

accumulator B

Direct Page Register (6889 only)
Condition Code Register

index register X

index register Y (6899 only)
Program Counter

User Stack Pointer U (€829 only)
Stack Pointer S

$0 Open program segment Reloction Register
$H Open user SWI handler address (or bad entry facility)
SN Oven terminal null count

Close the open location

{line feed> Close, open the next location
up arrow> Close, open the rrevious locaticn
w o Close, take tranchk offset and open
L Close, take absolute address and open
< Close, return to sequence start and open
AAAASB Insert a breakpoint at address AAAA
'L Look at the current assignment of all breakpoints
;D Delete the current breakpoint '
3 C Clear all breakpoints

AAALASG Start a user program at address AAAA
s P Proceed from breakpoint, abvort, or call

AAAASC Calculate branchk offset from open loc. to address A
VUi F Fill merory from BEG ADDR to END ADDR with value VV

{control X>

Abort current command line, take no action.

QASAR Users Manual- Lecember, 1580 Rage €3

