

FAIRLIGHT
 COMPUTER MUSICAL INSTRUMENT

CMI SYSTEM SERVICE MANUAL

1.0 INTRODUCTION

The Fairlignt Computer Musical Instrument is a complete music production and performance instrument. It is a special purpose computer system incorporating a custom dual m6800 central processor interfaced to special input-output devices optimised for the rather unusual requirements of music production.

The information presented in this manual is intended as a guide to give the reader an appreciation of the general operating oninciples of the C.M.I. In the event of a malfunction, it should be used to isoiate winch of the four main C.M.I. sub-systers is at fault, then for detailed functional information refer to the service manual for the item corcerned.

Related documents are: C.M.I. MAINFRAME SERVICE MANUAL GRAPHICS TERMINAL SERVICE MANUAL ALPHA-NUMERIC KEYBOARD SERVICE MANUAL MUSIC KEYBOARD SERVICE MANUAL FLOPPY-DISK DRIVE SERVICE MANUAL

1.1 SYSTEM OVERVIEN

The system comprises for main units (Refer Eig. 1).

1) Mainframe: Houses the computer section, floppy disk drives, audio generation section and power supplies.
2) Grapnics Terminal: The primary display terminal for the computer. It is a 15 inch C.R.T. display with lightpen.
3) Alphanumeric Keyboard: Sends serial ASCII data to the computer. Used for operator input of commands etc.
4) Uusic Keyboard: Piano-like keyooard sends serial data to the computer on each key depression. Used for live playing, Also includes several analog controls and switches which are digitised, and a numeric keypad with 12 character alpha-numeric display which serves as a secondary Input-output device.

2.1 C.M.I. MAINERAME

The Mainframe houses the computer section of the C.M.I., that is all the digital control and sound zenerating hardware. It can be considered a stand-alone operational unit. With nothing connected to it it is possible to start up the system and bootstrap load the disks (BOOT the system). On power-up, EPROMS located on the C.P.U. Control Card Q-032 will control the Boot process.

Is soon as a disk is placed in the lefthand drive (Drive 0) a special sector known as the Zoot 3locn is read into RAM and executed. The code
 Operating System. The systam is then ready to accept comands from the alpna-keyooard, music keyooard or lignt pen.

For deatailed information reser to the C.I.I. MAINFRAME SERIICE YANUAL

2.2 GRAPHICS TERMINAL

Display data for the Graphios Terminal is generated by the Graphics Disolyy card $2-045$ in tie form of a composite video siznal. The display format is a bit-mapped image of 16 kilooytes of URAM, displayed as a 512 (Horizortal) 3 y 250 (Vertical) matrix.

The Liznt-Pen operates by sendinz a plise back to the computer when the phosphor dot is "seen" to Ilash past. The Liznt Pen Interface 21+8, located in the Mainframe generates $X-Y$ co-ordinates from the timing of this pulse. is well as this "Hit" signal from the lightpen, there is a "Touch" signal, winch indicates that the operator has activated the pen by toucning the end.

For detailed information, reíer to the GRAPHICS IERMINAL SERVICE MANUAL.

2.3 MUSIC KEYBOARD

The music keyboard interfaces to the Mainframe via a bi-directional RS-232C port located on the processor control card Q-032. The Baud rate is selected by the Terminal Speed control on the from panel of the mainframe, and D.I.L. Switches inside the keyooard. Both of these must be set to 9600 Baud.

The keyboard is controlled by an on-card $M 6802$ microprocessor executing a program in EPROM. As well as data communications with the Mainframe, data coming in from the alpha-numeric keyboard is preprocessed before being forwarded to the mainframe.

Data is sent to the computer wnenever：
1）A music key is depressed or released
3）A key on the alpna keypoard is pressed
3）One of the tinree faders is moved
4）A switch or pedal plugged into the keyboard is operated
Keystroke data is sent in the form of three－byte packets．This includes keyboard numoer，key number，depression／release flag and key velocity data．Key velocity is calculated by the on－card processor which times the flight of the key contact as it travels between two ousbars．

The 12 di弓it alpna－numeric display on the right－nand end of the keyboard is used to tis？̉ay＝essajes to the operator in circumstances where the Grapnics Termina：is not being used．The display is controlled by the processor s．the keyooard．On power－up，the message －POWER ON－is displayed．Znis is generated locally by the keyooard itself．Once jootinj nas co䒑⿰enced，the messane LOADING is dispalyed． This message is sent by the mainframe，via the serial link．

The control devices（fajers，switches and pedals）are digitised by an eignt－bit Analogue to Di弓ital converter in the music keyboard and when the data cnanges，a ？acnet o：data is transmitted down the serial link to tne mainframe．

For detailed information，reier to the MUSIC KEvBOARD SERVICE MANUAL．

2.4 ALPHA－NUMERIC KEYラOARD

This keyboard lises arotner M8802 microprocessor winh controls scanning of the 02 fall－eftect switches and serialises the data wich is transmitted in dSCII ：orazt，RS－232C protocol．Data rate used is Gó00 Baud，selected $\geqslant \%$ D．I．L．switones on the circuit ooard．The processor executes Eirmiare stored in EPROM．

Normally the alpha－numeric keyboard is plugged into the music keyboard．It receives ics power from there，and sends its data to the processor in the music keyboard．The data is flagged as alpha－numeric， queued until there is no music keypoard data，and then forwarded to the mainframe．If desired，the alpna keyboard can be plugged directly into the Keyboard connector on the mainframe，bypassing the music keyboard．This can be a useful diagnostic aid．

2．5 INTERCONNECTING CABLES

The four major sub－systems are connected by pluggable cable sets which should be treated with the same suspicion warranted by mechanical parts．The signals carried by each cable，together with pin numbers， are described fully in section 4 ，below．

Inis section covers trouleshooting the C.M.I. system only to the level of identifying which of the four sub-systems (mainframe, music keyDoard, alpha-keyooard or graphics terminal) is at fault. Having cone this, service personel should refer to the service manual for the offending itea.

NOTE: Remember that the C.M.I. is a complex piece of hardware running sopnisticated software, and it is sometimes hard to differentiate between a hardware fault, software oug, and operator error. If there is any douot, the same sequence of operations should be tried on a inown good system before attempting hardware repairs. In executing the following diagnostic procedures, the serviceman snould be aware that a Eaulty System Disk can cause what appears to be hardware faults. Furthermore, hardware faults an cause disks to be destroyed, either physically or by corrupting data, so it is wise to keep a good supply of C.M.I. system disks and diagrostic disks on hand.

3.1 EAULT ISOLATION $3 Y$ SUB-SYSTEM SUBSTITUTION

Fie easiset way to identify the Eaulty sub-system is to exchange whole units for krown good ones if such are available. If a complete working system is on nand, exchange each suo-system in turn, starting with the nost likely to be responsible for a fiven fault. Some common fault sjpptoms and sufgested suostitution procedures follow.
3.1.1 Sjstem rill not joot. (Sucessful Boot is indicated by Page 1 appearing on the screen, or Page 1 Ready qessage at the music keyooard).

Unplug keyboard from mainframe. If it still does not boot, the fault is in the mainframe. If it does boot, try suostituting the music keyboard. If it still does not boot, suostitute the alpha-keyboard. The Grapnics Terminal should not be able to affect booting. If the problem does not $g 0$ away at any stage, suostitute the interconnecting caoles one oy one.
3.1.2 System boots (Page 1 on screen or message at keyboard) but does not respond to alpha keyboard comands.

Substitute music keyboard, then alpha keyboard, then graphics terminal, then cables. If problem persists, the fault is in the mainframe.
3.1.3 No sound when voice loaded and music keyboard played.

Substitute music keyboard first, then cables, then alpha keybaord, then granics terminal. Plug the alpha-keyboard into the mainframe directly, and hit 〈CNTRL $P>$. A note should play. If not, the fault is in the mainframe.
3.1.4 System works properly except Graphics display or ligitpen malfunctions.

Juostitute zrapnics terminal and cable first．If no better，Eault is almost certainly in mainframe．

3．1．5 Other strange behaviour．
Start by suostituting mainframe．

3.2 SUE－SYSTEM CHECKOUT WITHOUT SUBSTITUTION

In many cases the faulty sub－system will have to be identified using only commonly available test equipment．Minimum requirements are a multimeter for zeasuring volts D．C．and resistance，an oscilloscope， and the usual set of tools such as screw drivers，pliers，soldering iron etこ．

The fau：ご；suo－systen can usually oe isolated oy the following tests：

3．2．1 Systen will not boot．

Unplug keyjoard input and try again．If system does not boot，iault is in rainframe．If it now ooots，fault is in music keyvosr土，alpia xeyboard or sables．To isolate which，try again with alona xeyooard plujged straignt into mainframe to eliminate music keyvoari．

3．1．2 system joots but does not respond to alpha keyooard sommands．
Most likely Euut is in alpha－keyooard or cable．If the keyooard does not cliak winen a key is pressed，either the keyooard is Eaujty or the power supply to the keyboard has failed．Cneck the supplies and data output at the keyocard plug using the Signal List（Section 4 ，jelow）．

3．1．3 No sound when voice loaded and music keyboard played．
Check for normal operation with the alpha－keyboard plussed directly into the aainfrage．A note should be neard if 〈CTRL P〉 is pressed with a voice loaded．If this works，then the music keyboard or cable is probably faulty．Check for the correct signals at the power and siznal connectors at the music keyooard．（Refer section 4）．

If there is no sound in response to the 〈CNTRL ？＞，then the fault is in the mainframe．
3.1.4 System works properly except Graphics Terminal malfunctions.

Check video ouput signal at the Graphics connector. If this is normal, fault is in Graphics Terminal or cable. Note that a negative image can be caused by a fault in the graphics terminal or the mainframe, and cannot be easily seen by looking at the signal on an oscilloscope. To achieve a substantially black image for examination with the oscilloscope, remove the system disk and restart both processors. This will result in just the words CMI READY on a black screen, in waich case the scope display should show any fault clearly.

3.1.5 Lightpen does not work but everything else normal.

Point the lightpen at a light area of the screen. If there is a cursor which disappears when the Touch is activated, then the fault is in the mainframe. Otherwise the fault may be in the Graphics Terminal, lightpen or cables. Check for proper Hit and Touch signals at the Graphios connector at the mainframe by unplugzing the cable and ising an oscilloscope. If these are not correct the fault is in the Grapiniss Terminal. Otherwise the mainframe is faulty.

3.1.б Other strange behaviour.

Most otiner faults such as improper operation of one or more of the sound channels or unreliable reponse from the computer can be attributed to a fault in the mainframe. To eliminate all ofiner posibilities a useful diagnostic trick is to start the system playing a long M.C.L. or Page 9 Sequencer loop and un-plug all cables except the mains input and audio ouput. If the fault is still evident, inen the mainframe is definitely to blame.

This section describes the signals present in each conductor of each interconnecting cable in the C.M.I. System when functioning normally. Refer to Figure 2 for cable identification.

Figure 2 C.M.I. SYSTEM INTERCONNECTION CABLES
4.1 Mains Cable: Part no. MC006 (Cannon) or MCO68 (I.E.C.)
A.C. Mains Neutral, Active and Ground.
4.2 Graphics Terminal Power: MC007 (Cannon) or MC067 (I.E.C.)
A.C. Mains supply to Graphics Terminal. Switched by key switch on mainframe. This supply is always the same as the local mains potential.
 Video signal to Graphics Terminal and Light pen signals to mainframe.

Connector Type: Cannon j-pin.
Pin 1 Lighten tit. T.T.L. level, asserted low. On oscilloscope, appears as a series of low-joing pulses about hus wide, repeated every 20 mS , when the pen is pointed at a bright area of the screen. (See sig ha)

Pin 2 Lighten Signal Return. Ground for lighten signal cables.
Pin 3 Lighten Touch. T.T.L. level, asserted low. Normally at approx +4 volts, goes low (less than 0.4 V) when the end of the lighten touched.

Pin 4 Video Return. Ground for Video signal cable.
习象 (
Pin 5 Composite Video. IV pop video signal to Groapnics display. Format is 625 lines, 50 Hz frame rate. (See fig 3b)

Figure Ba LIGHTPEN HIT SIGNAL

Figure 3 b COMPOSITE VIDEO
4.4 Music Keyboard Power: MC064

Unregulated power supply to music keyboard (also indiectly supplies alphanumeric keyboard).

Connector Type: Cannon 7-pin.
CI SYSTEM SERVICE MANUAL
PAGE 10

Scanned by JB EMOND - www.fairlight.free.fr

4.5 Music Keyboard Signal: MC060

Bi-directional serial data between mainframe and music keyboard, including "ousy" flass in both directions. Power supply is also carried oy this cable, to power the alpha-numeric keyboard if it is connected instead of the music keyooard.

Connector Type: 9 Pin "D-Mini"
Pin $1+18$ to 22 volts unregulated supply. This is not used by tne music keyooard.

Pin 2 DON1. Signal to enable transmission of data from the keyboard. RS-232 levels. Enabled: >7 volts. Disabled <7 volts. Witn noting being trarsmitted from the keyboard, tinis signal should be at approx. +10 volts. When keys are pressed or released a ourst of -10 volt pulses should be seen for between 2 and 10 milliseconds.

Pin $3-18$ to -22 volts unregulated supply. Tinis is not used by the music keyboard.

Pin 4 FLAG1. Signal to diasble transmission of data from the mainframe to the keyboard. Signal is normally +10 volts.

Pin 5 SIGNAL RETURN. Ground for data paths.
Pin 6 DATA IN. Serial data from keyboard to mainframe. Format is RS-232. Normally at -10 volts. When a key is pressed or released a burst of +10 volt pulses lasting approx. 3 mS sholud be seen.

Pin 7 POWER RETURN. Return (Ground) for + and - supplies.
Pin 8 Not Connected.
Pin 9 DATAI. Serial data from mainframe to keyboard. Format is RS-232. Normally at -10 volts. For each character sent from the mainframe to the alpha-numeric display a burst of +10 volt pulses lasting approx. 1 mS should be seen.

```
4.6 Alpha-numeric Keyboard Power/Signal : MC013
    Unregulated power supplies to alphanumeric keyboard, serial data
    from alphanumeric keyboard.
    Connector Type: 9 Pin "D-Mini"
    Pin 1 +18 to 22 volts unregulated supply.
    Pin 2 Not Connected.
    Pin 3 - 13 to -22 volts unregulated supply.
    Pin 4 Not Connected.
    Pin 5 SIGNAL RETURN. Ground for data patins.
    Pin ó DATA OUT. Serial data from keyjoard. Format is RS-232.
        Normally at -10 volts. Each time a key is pressed a
        ourst of + 10 volt pulses lasting approx. 1 ms should je
        seen.
    Pin 7 POWER RETURN. Return (Ground) for + and - supplies.
    Pin 8 Not Connected.
    Pin 9 Not Connected.
```

4.7 Slave Keyboard Power/Signal : MC059
The Music Keyooard sends power and key multiplexer addressing
data to the slave keyboard. Key data is returned from the slave
keyboard.
Connector Type: "D Mini" 25-pin.
Pins 1,2 POWER SUPPLY RETURN. Ground.
Pin 3 KEY ADDRESS 0 Least significant key multiplexer address
bit. CMOS logic levels.
Pins 4,7 KEY ADDRESS BITS 1-4. CMOS Logic levels
Pin 8 SIGNAL RETURN Ground.
Pin 9 KEY DATA 1. Data returned from key multiplexer scanning
the lowest 24 keys. Normally at approx. -5 volts. Goes
to 0 volts while key is in flight, and +5 volts when
key is at rest in fully depressed position.
Pin 10 KEY DATA 2. Data from middle 24 keys.
Pin 11 KEY DATA 3. Data from top 25 keys.

Pins 11-21 Not Connected
Pins 22,23-20 SUPPLY. Unregulated power supply to slave keyboard, +18 to +22 volts.

Pins $24,25+20$ SUPPLY. Unregulated power supply to slave keyboard, -18 to +22 volts.

4.8 Printer : MCOÓ2

9600 stud

Serial data from mainframe to printer, "busy" flag from printer to mainframe, plus "device on" signal used to switch on printer in readiness to receive data.

Connector type: Cannon $\overline{\mathrm{j}} \mathrm{pin}$.
Pin 1 Signal Ground.
Pin 2 Not 2 Innected.
Pin 3 Eiago. "Busy" flag from printer. RS -232 levels. <-7 volts when printer ready, $>+7$ volts when printer busy.

Pin 4 DONO. "Device On" control iron mainframe to printer. aS -232 level, $>+7$ volts to enable printer, $\langle-7$ volts to diable printer. This signal is optional as some printers do not require it.

Pin 5 DATAO. Serial data to printer. RS-232 levels, ASCII Format. Normally at -10 volts. For each character sent from the mainframe to the printer a burst of +10 volt pulses lasting approx. 1 ms should be seen.

4.9 Phones

Output for driving headphones. Monitors the MIXED LINE output. Internally, this output is taken from the MONIIOR (speaker) output via a 100 on resistor.

Connector type: $1 / 4$ " (6.25 MM) stereo phono jack.
The following signal lists refer to connectors on the rear of the C.M.I. Mainframe.
4. 10 Monitor

Output for driving a monitor speaker. The internal monitor amplifier will deliver a maximum of 20 watts R.M.S. into an 8 onm speaker. Note that the Mainframe is fitted with a 1 amp speaker fuse which will blow if the monitor amplifier is driven to full output under load for more than a second.

Connector Type: Cannon 3 pin.

Pins 1,2 Ground
Pin 3 Active. With all channels producing a Exll-amplitude sinewave and the MONITOR control turned u? to the point of clipping, this output should be approx. 38 volts P-P (with no load)

```
4.11 Channels 1-3
```

 Individua! snannel outputs (balanced, 600 onms impedance).
 Connector tjpe: Cannon 3 pin.
 Pin 1 Ground
 Pin 2 Output Cold. Anti-phase output, raxizum level 3.7
 ?in 3 Output Hot. Maximum level 3.7 volts ?-?.
 4.12 Mixed Line Dutput
Mixed ourput of all eight channels (balanced, 600 onas
impedance).
Connector Type: Cannon 3-Pin
Pin 1 Ground
Pin 2 Output Cold. Anti-phase output, maximum level 3.7
Pin 3 Output Hot. Maximum level 3.7 volts $P-P$.

4.13 Sync

Synchronising input and output, for use with Music Composition Language (Page C) or Keyboard Sequencer (Page 9). This connector serves as botin an input and ouput.

Connector type: Cannon 3-pin.

Pin 1 GROUND
Pin 2 Sync input. Pulses or tone of 1 to 20 volts $P-P$. Waveform unimportant. Frequency range 2 Hz to 5 kHz . Impedance 10 K ohms.

Pin 3 Click Output. Periodic pulse, rate controlied jy ?age 9 Sequencer or M.C.L. (Page C). Waveform is a spike of approx. j volts peak, approx. 5 aS wide, alternately positive and negative going.

```
4.14 Filter Output
Output of the bandpass filter used by the Analozue to Digital
converter. It is designed to enable the operator to monitor the
effect of various bandpass filter settings.
Connector type: Canron 3-pin.
Pin 1 GROUND
Pin 2 GROUND
Pin 3 OUTPUT. Amplitude for full-scale conversion is 10 volts
    P-P. Source impedance 600 onms.
4.15 Mic In
Balanced, б00 ohms input suitable for high output dynamic or
condenser microphones. When the MIC/LINE switch is in the MIC
position, this input is fed to the Analogue to Digital converter.
Connector Type: Cannon 3-pin
Pin 1 GROUND
Pin 2 INPUT A
Pin 3 INPUT B
```

Balanced, 600 onm line level input. This input is connected to the Analogue to Digital converter when the MIC/LINE switch is in the LINE position.

Connector Type: Cannon 3-pin
Pin 1 GROUND
Pin 2 INPUT A. Amplitude of 1.4 volts $P-P$ required for full scale conversion.

Pin 3 INPUT B. Amplitude of 1.4 volts $P-P$ required for full scale conversion.

4.17 ADC DIRECT

Direct input to the Analogue to Digital converter when the $A D C$ DIRECT/ MIC LINE switch is in the ADC DIRECT position. Because this input is Direct Coupled, any D.C. offset on this input will result in a D.C. sinift of a sound sample.

Connector Type: Cannon 3-pin.
Pin 1 GROUND
Pin 2 GROUND
Pin 3 INPUT. Amplitude for full scale conversion is 10 volts P-P.

Having isolated the faulty sub-assembly, service personel should refer
to the service manual for that item for further details.

SECTION 6. PREVENTATIVE MAINTENANCE
Under normal conditions, the only preventative maintenance required for the C.M.I. is periodical cleaning of the mesh above the blowers in the Mainframe. Refer to the C.M.I. Mainframe Service Manual for full details.

CMI MAINEAME SEAVICEMANUAL
 FATRIGEM_INSEUMENTS, UUTY_1SE2

1 INTZCIUCTION
1.1 Card Cage
1.2 Audio Foard
1.3 Power Supely
1.4 Floppy-Disk Drives
1.5 Exte:nal Ccraections

2 SYSTEM OVEPVIEW
2.1 General Principles
2.2 Hardware/Software Relationships
2.2.1 Sysiem Startup/Eoot
2.2.2 Disk Cperatiors
2.2.3 Graphics Iisplay/Ligrtpen
2.2.4 Command Entry
2.2.5 Loading/Savic弓 sourds
2.2.6 Sound Samplifé
2.2.7 Music Playing
2.2.8 Music Ieyboard Furctions
2.2.c Sequencer
2.2.10 Music Composition Jarguage

3 SPECIFICATICNS
3.1 ELECTRICAL
3.2 AUDIC
3.3 DIGITAL
3.4 MECHANICAL

4 FUNCTICNAL DESCRIETICN
4.1.1 INTEOIUCTICN

4.1.2.1 Master Tiring Sizaals
4.1.2.2 Lynamic Nerory Tiring Signals
4.1.2.z Iata and Address Buss Multiplexing 4.1.2.4 Interrupt Strobe Generation 4.1.2.E Iirect Merrory Access
4.1.3 CLCCK LRIVERS, CFUS and VECTOR-FETCE DECOLERS
4.1.3.1 Processor Clocks
4.1.z.z Vector-Fetch Iecoders
4.1.4 BUSS DミIVERS \& INTERUPT LIYEL MULTIPLEXER
4.1.4.1 Address Buffers/Multiplexers
4.1.4.2 Lata Buffers/Multiplezers
4.2 O832 C.P.U. CONTROL CARD FUNCTICNAL IESCRIPTION
4.2.1 INTRODOCTICN
4.2.1.1 Addressing Map
4.2.1.2 Restart and Interrupt Vectors
4.2.1.3 Debug Monitor Firmare
4.2.1.4 System Eootstrap/ Disk Controller Firmware
4.2.2 ADDEESS DECCDING AND RAM REFRESH CCNTROL
4.2.2.1 Address Lecoding
4.2.2.2 RAM Refresh Control
4.2.3 EPRCM, RAM, ACIA, PIA
4.2.3.1 Static RAM
4.2.3.2 EPROM
4.2.3.3 ACIA (Asynchronous Communications Interface Adapter)

18
4.2.3.4 PIA (Peripheral Interface Adapter)
4.2.4 TERMINAL INTERFACE, MANUAL CONTROLS, PONER-CN RESET

```
    4.2.4.1 Terminal Interface
    4.2.4.2. Manual Cortrols
    4.2.4.3 Sower-ce Reset
4.2.5 INTERREPT PPICRITY LOGIC AND DATA BUFFERS
    4.z.5.1 Interrupt Priority Logic
    4.2.E.2 Eata Euffers
4.3.1 INTFCDUCTICN
4.3.2 ADERESS EECCDING 5 MAPPING IOGIC
    4.3.2.1 Address IEcodicg
    4.3.2.z Map=1ng Lc&ic
4.उ.3 BUSS INTEP.7ACE
    4.3.3.1 Address Euffers and Row/Column Multiplexer
    4.3.z.2 IATA BUPFERS
4.3.4 MYMOZY AERAY
4.4 CFCZ FIOPEY DISE CONTEOEIER FUNCTIONAL EESCRIPTION
4.4.1 INTECDUCTICN
    4.4.1.1 Address Map
    4.4.1.2 Commands
4.S.2 DATA EUFFERS, EMA ADJRESS CCUNTER, VFRIFY COMPARATCR
    4.4.2.1 [MA AdCress Counters
    4.4.2.2 jata Euffers
    4.4.2.z Verify Corarator
4.4.3 AIIRESS IECCIING, CONTROIIER L.S.I., IRIVE SELECT
    4.4.3.1 AdCress Decoding
    4.4.z.z Controller I.S.I.
    4.4.3.2 Erive Selert
    4.4.4 DMA LCGIC
    4.4.5 Data Seperator
    4.5 CQ4E GRAFEIC EISPIAY CONRGCLIER FUNCTIONAI DESCRIPTION
    4.5.1 INTPCDUCTICN
    4.5.2 SINCE GINERATOE, SEFERATOR AND REGENERATOR
    4.5.2.1 Synch G&nerator
    4.5.2.2 Synch Sezerator
    4.5.2.z. Synch 3ezfnerator
    4.5.3 VIIFO GFNERATION IOGIC
    4.5.3.1 Bit Clock Generation
    4.5.3.2 Video FIFO and Silft Register
    4.5.3.3. Video Cutput
    4.5.4 SELFCT ICGIC AND DATA CCNTROL
    4.5.4.1 Address Decoding
    4.5.4.2 Iata Euffers
4.5.5 VRAM ADERESSING LOGIC
    4.5.5.1 Addressing Counters
    4.5.5.2 Bit Selection
    4.5.5.z Vertical Scrolling
    4.E.E.4 VRAM Address Multiplering
    4.6 CO2E 1GK BYTE MEMCRY MCLULE FUNCTIONAL EESCRIPTION
    4.6.1 INTRODUCTICN
    4.6.2 ADDRESSING LOGIC & ROW-COLUMN MULTIPLEXER
    4.6.2.1 Address Decoding
    4.6.2.2 RAS/CAS Generation
    4.6.2.3 Row/Column Multiplexers
4.6.3 FAM & IATA EUFFERS
    4.6.z.1 RAM Array
    4.6.z.2 Lata Buffers
    4.? Q14C LIGHT FEN INTEPFACE - FUNCTICNAL DESCRIPTICN
    4.7.1 INTROIOCTION
    4.7.2 Co-ordinate counters, deglitcher, P.I.A
    4.7.2.1 Co-ordinate counters and Latches
    4.7.2.2 日1t Iegl1tcher
```

 Register.
4.8.1.1 Address DEcciive
4.8.1.2 Channel Selection
4.e.1.z VRAM Switching
4.8.1.4 Master Tunire feeister
4.e.2 Interrupt Control, Master Oscillator, Memory control
4.8.2.1 Interruet Coctrol
\&.E.2.2 Master Cscillator
4.e.2.3 Merciry Cortrol
4.e.3 Aralcgue to Eisital Converter
4.8.4 A-I Filter System
4.G CMIG1 CEANNEL CAPE - FUNCTICNAL EESCRIPTICN
4.E.1 INTROIDCTION
4.18 CMIQ4 AULIO NOLUZE - EUNCTIONAT EESCRIPTION
4.10.1 INTECIUCTICN
4.10.2 MIXER, LINE ERIVEZS
4.18.2.1 Mixer
4.1ヶ.2.2 Lice Erivers
4.1R.Z MONITOR AME, INDUT AMPS, SPNCB IN/OUT
4.10.3.1 Monitor ATFlifier
4.18.Z. 2 Ingut Arplifiers
4.10. z. z Synch In/Out
4.10 .4 POKER SUPPEY
4.11 OPSA I.C. ECHEP SUEPIY ASSEMBLY - FUNCTIONAL DESCRIDTICN
4.11.1 INTROIUCTICN
4.11.2 UNRFGUTATEL SUPPIITS
4.11.3 REGULATOR $5 \nabla C L T 18$ AME
4.11.4 $\pm 1 \overline{2}$ VOLT, 24 VOIT SEPPIIES
4.12 CQZ FRONT PANEL CONTROL

5 TROUBEESECOTING
5.1 Introduction
5.2 Power Supply
5.3 Corputer Section
5.4 Disk System
5.5 Channel Cards
5.6 Master Card
5.6.1 Channel Card Selection
5.6.2 Channel Card Master Clock
5.6.3 Analogue to Digital Conversion
5.6.4 External Synchronisation and Timer
5.7 Audio Card

6 DIAGNOSTIC SOFTWARE
6.1 INTRCDUCTION TO DIAGNCSTIC SOFTWARE
6.1.1 Running the Diagnostic Disc
6.1.2 Runnicg the Test Programs
6.1.3 Measurement Tolerances

```
6.2 Channel Card Tests
    E.2.1 Filter Tests
    E.2.2 havefcrm i.erory Tests
    6.2.3 Envelope Control Tests
    6.2.4 Volume Control
    6.2.5 Timer Tests
    6.2.\epsilon Pitch and Octave Control
    6.2.? Interrupt Flags
6.3 Master Card Tests
    6.3.1 Timer Tests
    6.3.2 Master Eitch Register Test
    6.3.z A-I Converter System Tests
                            E.3.3.1 AD Tests using External Analog Source
        E.z.z.2 AD Tests Usire Irternal Analog Source
    6.3.4 Master FandFass Filter Tests
    6.3.5 Video Ram Conirol
    6.4.R E&I RAM Card Tests
    6.4.1 MEMTST
    6.4.2 MEMCH
    6.5.a Central Ercoessor control Module
    6.6.& Light P@n Interface
6.1 CMILP
    6.6.2 IDTST
        E.E.2.1 Iight Pen Timers
        E.f.2.2 Jight Pen PIA
        \epsilon.\varepsilon.2.z Processor Access Selection
        6.E.2.4 Light Pan Lrewing
    6.7.\ell Graphics Sjstem
    6.8.& Floppy Iisc Controller
    6.E.1 FICFIX
    6.8.2 EICIMA
    6.8.3 QFC-2 Alignuent
    6.G.0 Interrugt Tests - CMIINT
    6.10.\ell Testing a Complete CMI - Chain Tests
    6.1?.1 Iigital Syster. Tests
    6.10.2 Chamnel Card Analogue Tests
    6.10.3 Comprehensive Analogue Test
    6.11.\ell Summary cf Test Naveforms
    6.11.1 CMITST
    7 SIGNAL LIST - MCTBEDBCARD
    7.1 Master Card CMI-Z2 - Slot 1
    7.2 Channel Card CMI-&1 - Slots z to 10
    7.3 Analog Interface Card CMI-Ø7 - Slot 11
    7.4 Light Pen Interface 0148-Slot 12
    7.5 64K System RAM C-096 - Slots 13 to 15
    7.6 Processor Control (coz2) Module G-qz2 - Slot 16
    7.7 Central Processor Module Q-326 - Slot 17
    7.8 Floppy Disc Controller QFC-2 - Slot 18
    7.G Graphics Controller Q-045 - Slot G
    7.10 16K Graphics RAM Q-025 - Slot 20
    8 SIGNAL LIST - EXTERNAL CONNECTICNS
    8.1 A.C. Mains
    8.2 Graphics Power
    8.3 Graphics
    8.4 Keyboard Power
    8.5 Keytoard
    8.6 Printer
    8.7 Phones
```

```
    8.& Moritor
    8.` Channels 1-8
    8.10 Mixed Iine Output
    8.11 Sync
    8.12 Filter Out
    8.13 Mic In
    8.14 Inne In
    8.15 ADC IIRECT
@ DEMCVE/REPIACE PRCCEDURES
    G.1 CIRCUIT EOARE REMOVE/REPLACE
    G.2 LISK IRIVE REMOVE/REPIACE
    9.3 REAR FANEL REMOVE/EEPIACE
    C.4 AOLIO BOARI CMI-G4 RENOYE/BERIACF
    G.5 FAN ASSEMBLY REMOVE/REPIACE
    Q.E MCTEEFBCARD CNI-U5 REMCVE/REELACE
    G.7 POWER SUPPLY REGULAMOR REMOVE/EEPLACE
    G.& [.C. SUPEIY REMOVE/REFIACE
    G.G CARD CAGE REMOVE/R玉PIACE
10 REPAIR FPCCEIURE
11 PREVENTANIVE MAINTENANCE
12 SCEDMATIC DIAGRAMS
12.1 Cの2E SCREMATIC
12.2 COZ2 SCBEMATIC
12.30096 SCEEMATIC
12.4 OFC2 SCDIMATIC
12.5 QZ45 SCEEMATIC
12.60025 SCHEMATIC
12.7 C14E SCEEMATIC
12.8 CMIE2 SCEMMATIC
12． 9 CMIE1 SCHEMATIC
12.10 CMIO 4 SCEEMATIC
12.11 GPSA SCHEMATIC
12.12 QO3E SCBEMATIC
13 CIRCUIT BCARD OVEFLAYS
Q026 OVERIAY
Qe32 OVERIAY
0gGe overiay
GFC2 OVERIAY
0045 CVERIAY
Ce25 CVERIAY
Q148 OVERIAY
CMI民2 OVERLAY
CMIG1 OVERLAY
CMIR4 OVERIAY
OPSA OVERLAY
0 O36 OVERIAY
14 ELECTRICAL PARTS IISTS
14．1 Q826 DUAL 6800 PROCESSCR
14.2 Q日Z2 PROCESSCR CONTROL CARL
14.3 Q\＆S6 E4K RAM CARD
14．4 QFC2 FLOPPY DISK CCNTROLIER
14.5 CO45 GRAPHICS CARD
\(14 . \epsilon\) Q025 16K RAM CARD
14．7 Q148 LIGHT PEN CARD
14．E CMI 22 MASTER CARI
```

14.9 SMIZ1 CBANNEI CARD 17
14.19 CMI O4 AUIIO CARD 17
14.11 GPSA REGULATED POWER SUPPLY 18
14.12 D236 FRCNT FANEL CONTROL CARD 18
15 MCの21-21 hIRING IIAGRAM 18
16 EYPIODEI VIEWS 18
16.1 DNCX46 TRANSFCRMEF END DLATE 18
16.2 IMCaz2 CARD CAGE ASSEMBLY16.z DMCOET REGUTATEL POWER SUPPIY1818
1E.4 DMC0EE FAN ASSEMBLY 18
16.5 IMCOZE RIAR PANEI16.E IMCE42 FRONT PANEI16.7 JMCOJ1 MAINFRAME
17 MICRANICAI PARTS LISTS17.1 C.M.I MAINFRAME DRAWING REF.IMCZQR1
17.2 CAPD CAGE ASSEMBIY DRAWING DMC832
17. 3 MAINTRAME REAR PANI DRAWING IMCEZE
17.4 FRONT PANEL ASSEMEIY LRAWING LMCES217.5 TFANSFCRMEP END PLATE DRAXING LMCQ46.17. 6 BIGUIATED P.S.U ASSEMBIY ERANING IMCOE?17.7 FAN ASS FMBLY FAN ASSEMBLY LRAWING IMCQE181819$\stackrel{\rightharpoonup}{\circ}$

1. $®$ INTEOICOTION

The C.M.I. Mainframe houses all the data processing and audio supplies and floppy-disk drives.
This manual is designed to hely service personel locate ard rectify a fault in the C.M.I. mainframe.
Note that this ranual orly refers to the Mainfreme itself. The remainder of the C.M.I. System is covered by the following related docurents:
C.M.I. SYSTEM SERVICE MANUAL

MUSIC KEYECARD SERVICE MANUAL
ALPEANUMERIC KIYBOARI SERVICE MANUAL
GRAPEICS TERMINAI MAINTENANCE MANUAL
LISE DRIVE MAINTENANCE MANUAL

1.1 Card Caee

A 21-slot card cage houses a printed-circuit motherboard carring edge congeotors into which the c.M. I. circuit boards are ins and they can cards can be accessed iy hineing down the from the iront of the unit without requiring the use of any removed
tools.

1.2 Audio Board

Cables from the front of each channel card connect to the audio roard located inside the rear panel cf the mainframe. This card supgorts a variety of audio functions, including balanced line drivers for the eight cbancels and rixed output.
This card is accessed by removing the four mounting screws securing the rear panel and swinging the panel down. The carditself is held in place by screws. All cordections are made by plug-in cables.

1.3 Power Supply

D.C. power is provided by a corventional transformer/rectifier systen mounted inside the left-hand end of the card cage. This supplies fowe for the card cage, audio board, floppy-disk drives, music keyboard an alpha-ncreric keyboard.

1.4 Floppy-Disk Drives

Two eight-inch, double sided, single density disk drives are mounte to the right of the card cage. They connect to the power supply via wiring harness and to the floppy-disk controller card in the card cag via a 50-way ritton cable.

1.5 Exteral Cornecticns

All external concections are made by means of plug-in cables. Th mainframe is normally connected to A.C. mains, Graphics Terminal Music Keytoard and audio equipment such as monitor speaker or mixin console.

The precise function of each external connection is described unde Signal Iists (below).

2. \varnothing SYSTEM OVERYIE

2.1 General Princicles
(Refer to Fieure 1)
The C.M.I. is a complex special-purpose computer system which embrace maxy different bardware and software technologies. All processing an sound generaticn functicns are performed by the Mainframe, while th Graphics Terminal ard Keyboards serve as peripherals for operato interfacing.

The mainframe is capable of operating quite autonomously, that is, i is not reliant on any external connections for proper funtioning Urder certain conditions it is possible for a falt condition t inhibit proper Mairframe operation, so the serviceman should be war of beirg misled. Cf course, without the peripherals connected it i cften hard to kicw if the system is functioning properly, but thi point should be borne in mind when troubleshooting.

Cperator input to the Mainfame comes from three sources: rusi keyboard, alpha-nureric keyboard, and lightpen. Output devices includ the Graphics Eisplay terminal, and the audio outputs. A printer ma also be optionally used.

The heart of the system is the Central Processor Module, which use two Motorola 6eą ricroprocessors in a dual-processor configuration Both processors share a common buss which allows them both t communicate with the other cards in the Mainframe.

The Processor Control Module provides EPROM for system startup an bootstrap, RS-2z2 serial input from the keyboard, serial output tc th keyboard and printer, and various other C.P.U. support functions suc as interrupt prioritisation.

Main programme memory is the 64 kilobyte RAM card. This holds all th operational software, much of which is overlayed from dist as the cod far excedes 64 I .

The floppy-disk controller uses Direct Memory Access techniques t transfer data between memory and the two flopp-disk drives.

The Graphics ifsplay is a bit-mapped image of 16 kilobytes of VRAM The Graphics Controller module displays this Ram as an array of 256 512 points. Special hardware on this card profides support function for automatic vector drawing, which considerably enhances the speed o displaying graphical information.

The Lighteen Controller rocule interfaces the fit and Toush signal from the Lightpen (part of the Eraphics display terminal) to th syster buss.

Eight identical Voice Modules also share the bus. They each have kilobytes of waveform Ram, as well as all the control and audi circuits required to support it.

A Voice Master rodule controls the voice modules, as well as crovidi the Analogue to Digital converter function of the system.
Audio from the Doice Modules is buffered by the Audio cutput Modul which provides indeperant balanced outputs for each channel as well a mixed output.

W甘甘פVIG XכOT甘 WGLSAS •I•W•J•I כunsţ

2.2. Eardware/Sof tware Relationships

This section gives a summary of the operaticnal concepts involved each of the C.M.I.'s major functions. This inforration should hel relate a particular software function to the appropriate piece hardware.

The software systert is divided into two main sections, the resider sof tware and overlays. The resident partis responsible for all th real-tire furctions such as sound generation, keyboard inpu prozessing and liettpen operation. The overlays are used for th various control and sound manioulation functions provided by th display gages. Chargirg pages on the C.M.I. loads a new overlay fo that page from disk. Some jaés use further cverlays themselves. that when certaln functions are invored from a particular page for th first tire, a disk access will be made as the cverlay is loaded.

Both Frocessors have access to the 64 kilobytes of program R.A.M., s that scme of the code ray te executed ry each processor individually and both processors car shere corron data structures. As a rule processor 1 is responsible for controlling the voice modules (channe cards) and handilis data from the keytoard. processor 2 carries ou the non-realtime functions such as cisk I/C and éraphics display.

A broad description of a ranze of specific functions follows.
2.2.1 System Startuc/Boct

When power is first apglied to the system, a power-on reset siznal i gererated for about a half second by a timer located or the orocesso Control card, cezz. At the end of this tire, both processcrs fetc restart vectors from eproms, also on the ogz2 card and starterecutin the startup procedure in EPROM. Processor 1 initialises all th registers of the peripheral controller devices sucb as P.I.A.s an A.C.I.A.s. Processor 2 initialises the Graphics Display, clears th screen, and displays the "C.M.I. REAEY" message. The same message i sent to the music keyboard display via the serial link on the oe 3 card. Processor 1 then loops waiting to be triggered by processor 2 which in turn loops witing for a disk to be inserted in arive ε, a indicated by the appropriate status bit from the floppy-dis controller card QFC2.

When the sysytem disk has been correctly inserted, processor executes the first stage of the bootstrap loader firmware (located o the ogz2 card). This involves reading in the boot block, which is special sector on the system disk. The code stored in the boot bloc is then executed, which completes the boot load by loading th operating system and the Page 1 overlay. When Page 1 starts up, th message Page 1 ready is sent to the music keyboard display.

2.2.2 Iisk Operations

The C.M.I. uses two eight-inch double-sided disk drives. Format i soft sectored, 128 bytes per sector. Single density fM recording i used for extra reliability.

The drives themselves are controlled by a western ifigital filp7i I.S.I. controller located on the Flotpy Disk controller card ofcz.

The disk driver EPROM located on the 6232 card is used as the lowest level disk driver. Routines in this zprom provide utilities including read sector, write sectcr, and verify C.R.C. which are called by the ram-resident disk-operatirg system.

In the event of a disk error beins detected during a read or write oferaticn, the scftiare will perform a number of retries, includine head relocation, to trj to recover from the error. If the error persists, a DISK READ/WRITE error message is disElayed.
2.2.z Graphics Iisplay/Lightper

The graphics displey is Eenerated by writing a bit-mapped imase to the dedicated 16 kilotyte VAAM. This block of RaM is mapped in and out of the processor merory space under software control. The register for this purpose resides on the Master Card CMI日2 (see functional description below).

The lightpen is interfaced ria the 0148 Lightpen Interface card, and an interrupt to frccesscr 2 is zenerated each time the light pen fouch and Bit signals are asserted simultaneously. The processor z residen code is then executed to goll the lightpen co-ordinate registers anc the appropriate action ensues.

The lightpen cursor is a hardware function (see 0148 functiona descriptior belcw).

2.2.4 Command Entry

Data arriving from the Music Keybcard is fed to the A.C.I.A. on th o032 Processor Control Card. The A.C.I.A. generates an interrupt o processor 1 for as each byte is assertled. Data from the musi keyboard and characters from the al hhanumeric keyboard both arrive a the sare A.C.I.A. They are distinguished by the fact that musi keyboard data has the high bit set. Data from the Music Kekboar arrives in the form of toree-byte packets. These are assembled an queued by processor 1 for playing. Alphanumeric characters are passe on to processor 2. This is dore via common memory and an inter processcr interrupt. Interprocessor interrupts are generated b special hardware located on the Master Card CMID2 (see functiona description telow).

2.2.5 Loading/Saving Sounds

Sounds are stored as contiguous "Voice" files on disk. Rach voice fil occupies about 20 kilobytes of disk space. An entry in the director on track zero gives the physical sector number of the start of th file. When a file is loaded, the directory is searched and the addres of the file found. The sound is then loaded one sector at a time Since processor 2 performs all disk operations and processor controls the channel cards, data is passed between the processors vi a buffer in common remory.

If more than one chanel is being loaded with the same sound, multipl chanrels are enabled by the Master Card so that they car be written sifultaneously. See Master Card Functicnal Eescripticn (below) fo full details.

Saving scunds operates by the reverse frccess.
2.2.6 Scund Sampling

Audio input for samiling is fed to either the line input or ric inpu connector on the rear parel. It is amplified cr the Audio Card cmig and then fed to the Master Card CMIO2 via a 10 -way ribbon cable. Th signal is then attenuated by a digitally controlled atteruator ar filtered by seperate low pass and high pass filters on the Audio Card These filters are also software controllable. The attenuctor i controlled by the Eevel control on Fage 8 of the CMI system sof twars and filter cutoff foints are controlled by the filter tigh ard Filte Iow controls.

Fror the filters the audio is fed to the aralogue to Eigita converter. The sample rate is governed by the frequency of a puls stream coming from the chanoel Card ir channel one position. Th sample rate is therefcr established ty software which sets up charre one to operate at the frequenoy specified as sarple rate on page 8 .

Processcrone is used to read data from the $A-I$ converter and store in the desired chanrel cards waveform R.A.M. To syncironise th processor with the corverter, processor one is forced to a falt stat while a corversion is in progress, and as socn as the conversicn complete and data is ready to je read, the processor is un-halted an it reads the data. This causes Processor one's Halt I.E.D. to glo while conversions are in grogress.

The Trigger Level function on Page 8 is purely a software function When the Sample cormard is issued, the processor starts corversion and loops until the data read is of a ereater absolute value than th rumber specified as trizger level. It then begins transferring data the vaveform R.A.M.
2.2.7 Music Playing

Data arriving from the rusic keytoard is seperated from alphanureri keyboard strokes and asserbled into three byte packets by processor (see 2.2.4 above). The A.C.I.A. routine is interrupt driven. Once three-byte music keystroke packet has been assembled, the require note is played or stopped. The packet gives the keyboard rumber whether the stroke was a depression or a release, and a key velocit number.

Once the correct channel or group of chancels has been identified b software relating to the keyboard/register map on Page 3 , they ar started by the appropriate sequence of sof tware commands. The channe cards generate a number of interrupts as the sound progresses an various parmeters need to be updated.

Parameters fed to the channel card specify the pitch of the channel instantanecus amplitude, amplitude change (automatic ramping upo down), and position within the waveform.

The a udy out put from earh channel card is fed to the audio card by a 18-way ribbon able pluzged into the front of the card.

2.2.E Music Keytoard Functions

As well as sending music kej depression/release data to the mainframe, the rusic keytoard has a nurter of ancillary functions.
A rultiplexed analogue to difital converter samples the level of the three faders $c n$ the left-nand end of the keyboard as well as the three pedal irputs on the rear. whenever cne of these changes its level by more than a certain amount, a packet of data is transmitted to the mainfrare, givirg the device number ard the new level.

The two switches c the left of the keytcard ard the three switches which plug into the rear of the keytoard are also scanned, and when any of these are opered or closed, suitable data is sert to the Mainfrate.
Pressirg a key on the mureric kejpad on the right end of the keyboard sends a character to the Mainframe in exactly the same way as an alphanumeric yey deeressica.
The alhphanumeric L. T.r. display on the music keyboard is driven by the serial lirk coring fror the Mainfrare. The processor in the Keyboard controls the displaying of individual characters as well as backspace and clear. Hher messages longer than the i2 digits of the display are required, a horizontal scrolling routing in the C.M.I. system software is used.

2.2.c Sequercer

When recording on the sequencer (\quad fage \subseteq), a hardware timer located o the Master Card CMIX2 is used to reasure the elapsed time betwee everts such as key derressions or releases. As each event takes place yrocesor 1 assembles the keystroke or control change data into afive byte packet along with the time to the next event and queues it. Whe the queue is half full, processor 2 writes the data to the sequenc file on disk, emptying the queue.
In playback mode, Processor 2 reads the playback file into a queue Processor 1 takes zejstroke and timing packets from the queue and set the timer on the Master card for the time to the next event. When thi time has elapsed, the timer generates an interrupt and the next even is pulled from the queue and played.
The Merge function uses both Pecord and Playback processe simultaneously.
When running on Internal synch, the timer operates by counting then syster clock. When Exterial Synch is specified, the timer configured to use the external clock, which is derived from the syn input on the rear of the Mainframe, via suitable signal processi circuitry. The external synch is fed through another programmab timer so that it can be divided if desired.
2.2.10 Music Composition Language
M.C.I. data $1 \leq$ store on disk in the form of M.C. I. notation. The Lo comand simply causes processor 2 to read tae file specified in R.A.M. No processing of the data is dore at this stage.

When the ?lay command is issued, Processor 2 starts compiling source code and gererates reystroke Eackets which it queues along wi the $t i \pi e$ to the next event, which it calculates from the combirati of up to eight parts which it may be playing simultaneously. The packets are then processed by processcr 1 in ruch the same way as f the sequercer (described above).

Internal/External synchronisation works the same way as for Sequencer.

```
3.D SPECIFICATICNS
3.1 ELECTEICAL
Power ミequiremerts
    Mains Voltage: 120-128 or 200-250 5witch selectable
    Mains Current: 2 arps @ 240 V, 4 amps (o 120 V
    Mains Frequency: 50/EZ yz
3.2 AUIIO
Cranrel Cutputs
    Conrector tyfe: Canron RIR 3 pin (Ealanced)
    Number of Charnels: 8 (maximum)
    Output Level: z.? volts p-p
    Output irpedarce: 608 ohms
    Cutput load: Must be greater than 6&& ohms
Mixed Iine Output
    Same as Channel cutputs
Monitcr Speaker Cutput
    Condector type: Canfon XIR 3 pin
    Load impecance: 4 ohms (minimum)
    Power output at clipping: 20 watts max.
        (This cutput is not intended to be driven to full outp
        continuously.)
Eeadphone output
Connector type: 1/4" Stereo Phones
    Signal: Derived from monitor speazer output via 100 ohm resistor
Synch Input
    Connector type: Canmon XIa 3 pin
    Level: 1 volt (min) 20 volt (max) p-p.
    Frequency range: 2 #z - 5 ##z
    Impedance: 18##z
```


Click Cutput

```
Connector Type: Canncn XLR 3 pin Output signal: 5 volt spike, approx 5 mS wide, alterativs negative and fositive going.
Mic Input
Connector type: Cannon XIR 3 pin
Impedance: 6000
Mírofhone tyfe: Ealanced, high output dynaric or condenser type
Line Input
Connector type: Canron XIR 3 pin
Input signal: Balanced
Sensitivity: 1.4 volts p-p required for full scale conversion. Impedance 600 ohms.
```

ALC Direct Input

```
    Connector Type: Cannon TLR z pin
    Input Signal: D.C. coupled
    Sensitivity: 10 volts こ-p for full-scale conversion
    I.mpedance: 12& K ohrms
    3.3 DIGITAL
)
    Processor: Iual M6800
    Memory: E4 kilobytes Programme RAM
    16 kilobytes Video RAM
    12\varepsilon kilobytes waveform RAM
    FlopJy Iisk: 2x YI IATA YD174
    \varepsilon inch dourle sided, single density
    Soft sectcred, 12\varepsilon bytes per sectcr
Graphics Display: Bit mapped VRAM
    Composite video output
    1 volt p-p nominal
    75 ohms irzedance
Input/Cutput: SErial RS232-C, \subseteqЄQO Baud
3.4 MECEANICAL
    Eimensions: Width: 75% \pir
    Iepth: 450 mm
    #eizht: 32e m\pi
    keight: }\quad40\textrm{kilograms
)
```


4. C FUNCTIONAI_IESCRIPTION

This section describes the operation of each of the oircuit bcar used in the C.M.I. mainframe. The information is presented primari to give service rersorel a thorough understanding of the coeration the syster as an aid to fault diagnosis to the board level. Once t faulty board has been identified, it is recomended that the Mainfra be repaired ty board exchange. The faulty iter should re returned Fairlight Instrurents for repair.

4.1.1 INTRODUCTION

The Lual processor card operates each processor into a common addre and data bus in an interleaved manner, each processor therefore m simultaneously access the sare remory location without any contenti problems.

This unique manner of operation allows for full synergisti cperation, ard either synchronous or asyrchronous relationshi between processcrs.

The memory addresses are issued to the bus 225 nanoseconds prior the access cycle, allowing addresses to be rodified y y arextern memory mapping unit card for applications requiring in excess of bytes of memory space. Many Elobal timing signals are issued frof processor, these signals greatly reduce the corplexity of mary of other cards in the system.

4.1.2 TIMING \& MIMORY CONTROL LOGIC
 (Refer to drawine 0e26-81)

4.1.2.1 Master Tiring Signals

All syster tiring sigrals are derived from crystal-controlled 401 oscillator 0.5. Flip-flop E3 divides this pulse train by two to prov a symmetrical $2 \boldsymbol{a}$ MEz square wave, which is made available as a tim signal on the bus via $E 7$ on edge connector pin 43. Quad D-type la F2, together with one quarter of quad flip-flop El, are configured a twisted-tail ring counter which generates 10 unique states each 50 nanoseconds duration. The required states are decoded by NAND ga F1 and AND gates Fa.

4.1.2.2 Dynamic Merory Timing Signals

Four non-inverting buffers of $D 1$ are driven by latch E 1 to provide (Column Address Strobe), RAS (Row Address Strobe), CA (Column Addre (asserted low) and RA (Row Address, asserted low). RAS is dela relative to CAS by about 20 nS by the propagation delay of AT. RA CA are complimentary signals.

4.1.2.3 Data and Address Buss Multiplexing

Flid-flocs Fs and F5, alone with asscoiated gatine, generate th processor drive signals I1, D1, D2 22 from which the phase 1 and phas 2 clocks for each rrocessor are derived (see next section). The syste address bus is multiplexed by the AIDRFSS signals ADC(1) and ADI(2) Cne-of-four decoders $F 8$ and $F 9$ are used to enable the approprit address and data buffers to the bus to perform the multiplering. Th deta buffer enable siǵrals WRITEI, NRITE2, RIAE1, READ2 are generate by logical corbinations of Phase 2, VMA and Pead/wite, performed b Fe. The address buss is actualiy multiplexed four ways, as th vectored interrupt system may also acquíre the buss for eithe processcr's cyrle. The address buffer erables are a function of th Address signal and the Interrupt ackrcwledse, perforred by $\mathbf{F} 4$.

Phase 2 reference and Address references for each Processor are fed the bus via bus drivers.
4.1.2.4 Interrupt Strobe Generation

Iual I-type flif-flop A8 ard 3-ingut ANI gate Ap feed Irterrupt Lato Strobe pulses to the buss. These are used by the priority interru Control Units (PICUs) used to provide Vectored Interrupts, and also strobe the $\nabla \in c t o r$ address latches $E \in$ ard $E($ on sheet z. The PICUs al located elsewhere in the system. These signals strobe the priori latches continuously, until and interrupt is acknowledged. In this w the Interrupt Priority is raintained at its latest level rezardless delay tetween an interrupt request beine received by the PICU and t associated vectcr-fetch cycle being executed.

4.1.2.5 Direct Memory Access

DMA requests for each processor are clocked intoflip-fiop D6 on t falling edge of ohase two signals of the respective orocesscrs. I acknowledgement is sent to the buss via buffers and the drive sizna to the processors are suspended in the chase 1 state for the durati of the $I M A$ cycle. The maximur perrissable $D M A$ duration is microseconds. Worst-case DMA latency is 1 microsecond.

4.1.3 CIOCX LRIVERS, CPUS and VECTOR-FETCE DRCODERS (Refer to drawing 0026-62)

4.1.3.1 Processor Clocks

Non-overlapping clocks for processor Phase 1 and Phase 2 signals a generated from drive signals IL and IE. Emitter followers Q1-Q4 a provided to ensure legitimate MOS logic levels as required by the 68 (く.5 volts low, >4.5 volts high). Cross-coupling between phase 1 a phase 2 drivers ensures that each phase stays low until after t other phase has gone low.

4.1.3.2 Vector-Fetch Decoders

A series of open-collector AND gates follow the processor address bu state to detect addresses in the range FFF8-FPFF. The correspond the processor fetching vectors for IRQ, SWI, NMI and RESTART.

[^0]Restart vectors come from ROM so when this is sensed the ROM must b enabled and the RAM disabled. This is achieved by the POMEN (RO FNABLE) signal on Buss pin 44 . On detection of an ffeffrffaddres (restart being fetched), the one-of-four decoder e8 generates a appropriate signal, and both processors RCMEN is multiplexed onto th bus by 0 R gate $C 8$.

On detection of and Interrupt Fequest vector address from th processcr, an $I N T$ signal is generated by one-of-four decoder B8, whic causes the normal address buss drivers for bits 1 to 4 to be disable and the Interrupt Address buffers (on shhet 3) to be enatled in lieu.

```
4.1.4 EUSS DRIVERS \& INTERUPT LEVEL MULTIPLEXER (Pefer to drawing Qo26-3)
```

4.1.4.1 Address Buffers/Multiplexers

Two sets of tri-state buffers are alternately enabled to provid adcress buss multiplexing. ALDI and ALD2 enableprocessor $\frac{1}{}$ processor two addresses to the buss alternately, except during'a cycle, in which case the buss is tri-state. Bits 1 to 4 of the addres buss are rultiplexed between normal processor addresses and addresse coming from the Interrupt Prioritizer, depending on the signals NAD ard IAII. When an IPQ vector fetch is attempted, the buffers D3 and D are enabled instead of the normal address buffers, so that th interrupt priority which has been latched by flip-flops E6 or tecome Bits 1 to 4 of the address from which the vector will b fetched. The vector fetch is a double-byte, so address bit θ is lef un-multiplexed.

4.1.4.2 Iata Buffers/Multiplexers

4.2 GQZZ_C.P.U. CQNTROI_CARE_FUNCTIONAL_IESCRIPTION
4.2.1 INTROIUCTION

The CPU Control Card provides several support functions required the CPC card. These include startup and bootstrap RCM, seri comrunicaticns, interrupt prioritisation and a parallel port.
4.2.1.1 Addressing Map

This card occupies the last $\leq \mathbb{Z}$ bytes of the 65 K byte phsyical memo addressing space and is set up as follows:-

ALEPESS (HEX)
F2eD-F3FF
540 D-F7FF
Eعの日-FBTF
FCQD-ECEF unused
FCFO
PCPS,FCFE
FCFE-FCFE
FCFC
FCFD
FERO-FEFT
FFRG-FFFF

```
FUNCTION
Comron ROM
Common \(2 C M\)
z unique 2oms, one for each processor
Available for user peripherals
Serial I/O control
ACIA rezisters
DIA rezisters
CPU\#1 intersupt prioritiser
CPU\#2 interrupt prioritiser
Shared 512 byte RAM
Urique 256 byte RaM for each processor
```

4.2.1.2 Restart and Interrupt Vectors

Pam space allocated uniquely to each processor provide independe restart and interrupt vectoring. The vector locations are as follow
(EIX)
FFE $/ \mathrm{F}$
FFFC/D
FFFA/B
FFFE/G
FFFE/?
FFF4/5
FFF2/3
$\mathrm{FFFD} / 1$
FFEE/F
FFEC/D
FFEA/B
FFER/ \subseteq
FFE6/?
FFE4/5
FFE2/3
FFED/1
FFDF/F
FFDC/D
FEDA/B
FFDE/9
FFD6/?
FFD $4 / 5$
FFD2/3
FFIO/1
$\mathrm{\nabla ECTCR}$
(6830 SYSTEM)
Restart
NMI
SWI
Unused Unused Unused Unused Unused IRO level 7 (lowest) IRQ level 6 IRQ level 5 IRQ level 4 IRQ level 3 IRQ level 2 IRQ level 1 IRQ level 0 (highest)
Monitor workspace Moni tor workspace Monitor workspace Monitor workspace Monitor workspace Monitor workspace Monitor workspace Monitor workspace

VECTCR
(68ดS SYSTEM)
Restart
NMI
SkI1
Unused
FIRO
SWI2
SWIZ
Unused
IRG level 7 IRQ level 6 IRG level 5 IRQ level 4 IRQ level 3
IRQ level 2
IRG level 1
IRQ level 0 (highest)
IRQ level 15 (lowest)
IRQ level 14
IRQ level 13
IRO level 12
IRQ level 11
IRQ level 10
IRC level \subseteq
IRO level 8

Balanced, 600 onm line level input. This input is connected to the Analogue to Digital converter when the MIC/LINE switch is in the LINE position.

Connector Type: Cannon 3-pin
Pin 1 GROUND
Pin 2 INPUT A. Amplitude of 1.4 volts $P-P$ required for full scale conversion.
Pin 3 INPUT B. Amplitude of 1.4 volts $P-P$ required for full scale conversion.

4.17 ADC DIRECT

Direct input to the Analogue to Digital converter when the $A D C$ DIRECT/ MIC LINE switch is in the ADC DIRECT position. Because this input is Direct Coupled, any D.C. offset on this input will result in a D.C. shift of a sound sample.

Connector Type: Cannon 3-pin.
Pin 1 GROUND
Pin 2 GROUND
Pin 3 INPUT. Amplitude for full scale conversion is 10 volts P-P.

4.2.1.4 System Pootstrap/ Disk Controller Firmare

This EfROM is used by Processor 2 for disk operations and occupies locations F8日g to FBFF in the unique ROM space for CDUZ. The following functions are provided:-

* Boot load operating system from disc
* Initialise disc controller
* Read full last sector
* Pead partial last sector
* Read verify (CrC check only)
* Write and verify CRC
* Destore head (seet track 0)
* Seetr to specified track
* Write test
* Write D.D. rark to sector
* Write sectors and verify CRC
* Write sectors and don't verify CRC
* Check ard abort if non recoveratle error
4.2.E AILRESS IECODING AND zAM REFRESE CCNMROI (Pofer to drawing Q232-81)
4.2.2.1 Address Decodine

The System Data Euss is buffered by non-inverting buffers al and A NANL gate AZ Eererates an output (asserted Low) when an address in th range FXXX is detected. This is fed out to the buss on edge conrectc pin 65B (RAMINH) to disable RAM when accesses to this address rang are rade. Further decoding by one-of-four selectors Bl EEnerate selec signals for the four EFROMS, ROM1 through ROM4. ROM1 and ROM2 are the processor-unique ROMs, which are selected by the $A D D 1$ and $A D D$ (address) sigrals fror the buss, which are gated in by NANE gates B6.

Selection of the on-card static RAM and peripheral devices in the FCFX range are also deccded.

These six select signals are latched by hex flip-flop B7. Eex flipflops E 2 and $B Z$ latch the 10 low-order address bits, as well as the READ/WRITE and Card Select signals.

4.2.2.2 PAM Refresh Control

Rate multiplier $B 8$ is confieured to produce a 1 microsecond pulse every $1 \in$ microseconds. This output (ELTST) generates a LMA request for Processor 1 (REQ1). When this request is acknowledged, by the ACK1 buss signal (asserted HIGE), NAND gate AP generates a Ref (Refresh, asserted LOW) signal on the buss, which signals a refresh cycle to the dynamic RaMs in the system. At the same time, the output of the refresh address counter 15 is driven onto the buss by tri-state buffers A4. At the completion of the refresh (DMA) cycle, the refresb address counter is incremented ready for the nert cycle.
4.2 .3 KPROM, RAM, ACIA, PIA.
(Fefer to drawing Qe3z-g2)
4.2.3.1 Static FAM

A small amount of static RAM is provided for use as scratchpad durin disk calls and ronitor firmare execution. It is crganised as follows

CPU $\# 1$	$F F Q Q-F E F D$
CYU \#2	$F F Q Q-F F F D$
EOth	$F D Q Q-F E F F$

The addressing function for this purpose is generated by multiplexe ce which is diven by an $C R$ funtion of address bits 8 and G. The RA itself is in thefcriof two ik X devices.
4.2.3.2 EPPCM

Four kilobytes of $\mathrm{J} . \mathrm{V}$. erasable gom are used. These are 278 g tyo.
Their functions are:
Location Address Ranee CPO \# Function

4.2.z. 3 ACIA (Asynchrcncus Communications Interface Adapter)

A 6850 ACIA (ER) is used to receive and transmit serial data. The BAU rate is determined by seperate Receive ard Transmit Clock siganls coming from the baud-rate generator on the front panel card (oq36) vi the $2 \in-w a y$ ribton cacle on the front edge of the ogz2 card.

Interrupts generated by the ACIA go to the system buss via oin 68B o the edge cornector.

Data input and cutput level conversion for the RS232 standardi provided by circuitry on sheet z.
4.2.3.4 PIA (Peripheral Interface Adapter)
$A \quad D I A(F 8,9)$ is used to provide two general purpose parallel ports Peripheral connections are made through a 26-way ribbon cabl cornector on the front of the card.

Interrupts from the PIA are presented to the bus via pins 66 A and 67 B
The PIA is also used by processori to provide a real-time cloc function \quad ia its. CBi inout which is clocked continuously by RTC pulses coming from the refresh address counter $A 5$ on sheet 1 .
4.2.4 TERMINAL INTEPFACE, MANUAL CONTRCIS, POWER-ON RESIT
4.2.4.1 Terminal Interface

RS232 recelvers and drivers are provided to interface the ACIA tc serial data to and from peripheral devices. F1 is the RS2z2 driver Two data output paths are provided, called Datag and DATA1. Device control signals [ONe and $I O N 1$ are used to eqable external peripherals The serial-I/O control latch I is used to select which of the dat paths is enabled, and which devices are switched on. It is configured by writing to FCFQ. As well as selecting data cutput paths, bits 2 and 3 of this latch select which of two busy" flass are enabled to the CTS Din of the ACIA.
Bit 4 of the Serial $/ / 0$ control is used to select the polarity of th busp flag by maens of exclusive-or gate \mathbb{F}.

Bit 5 is used to control the threshold of the busy flag bits of RS23 receiver F2. when bit 5 is EIGE, transistor 01 is held off, and regative bias is applied. With bit 5 LCW, G1 turas on and biases th receivers positively.
The orto-isolator is not normally used, but its cutputs are availabl at the edge connector if required. It is turped on by writing $\varnothing 1$ t the two high bits of the serial I/C control latch.
4.2.4.2. Marual Controls

Restart and interrupt contols are provided on the front-panel car Geze. The push-tutton switches are debounced by R/S flip-flops made u by gates in F3. Frocessor selection is aceived by NAND gates ra, whic also drive the buss.

Processcr \#alt controls are latched ky flip-flops F5. This debource the switches and also ensures tiat the 6800 timing requirements E_{o} RALT control are met.

When a Wit state has been achieved, the Buss Available signals fro the CPU card wl and W2 drive open-collector buffers E5 to turn on th WAIT IEIs on the front parel.

4.2.4.3 Power-on Reset

555 Timer E 3 is used to generate a system reset signal on pover-ur This is a low-going pulse of about 500 milliseconds on buss pin 42 .

4.2.5 INTERROPT PRIORITY LOGIC AND LATA EUFFERS

 (Refer to drawing Q03z-04)4.2.5.1 Interruft Friority Logic

8214 Priority Interrupt Control Units (PICU) are used to lat irterruet requests and generate a priority level which is used by t CPU card to create an interrupt vector address.

The criority level for each PICU is established by witing th compliment of the desired priority level into the status rtegiste The address for CPU 1 is FCFD, for CPU 2 it is FCFC. Decoding for th purpose is performed ty one-of-eight selector ミib.

Interruct requests eenerated by the PICU are latched by flip-flo D1a, which are reset wher the PICUs are written to to establish new pricrity level rask.

The PICUs are clocked by Interrupt Latch Strobe sigazls from the bu (ILS1 and ILS2).

Each PICU supports up to eight levels of interrupt. To expand beycnd eight, the EICUs can be daisy-chaired by changing links terminal strip $T 1$.
4.2.5.2 Data Euffers

Inverticg tri-state buffers B4 and BS irterface the local data buss the system data buss. The direction of data transfer is controlled b PEAD.

)

4.3.1 INTRODUCTION

The 64K RaM Card contains $32 \times 16 \mathbb{x}$ 1. bit dynaric RAM chips. The RAM runs at a cycle time of 500 nS and is refreshed by a global refresh syster contained on the Processor Control Card.

In addition to the dynamic RAM, a fast 16×4 bit static RAM is used to provide an independent mapping of each of four 16π lozical processor spaces to the 64Z physical address space. This mapping RAM is also responsible for enabling the entire card when more than one 64K RAM card is installed in the syster. A four-bit module select switch is used for this purpose.

4.3.2 AIDRESS IECODING \& MAPPING LOGIC
 (Refer to drawide GOE6-Ø1)

4.3.2.1 Address Decoding

The rapping register base occupies memory space fror fCAC to FC4F Accesses to these addresses are decoded by NAND gate C2, and latched by I-type flip-flop B1. The low four bits of the address are also latched by B1 and these are selected by $4-b i t$ multiplezer $B 2$ when writing to FC4X.
4.3.2.2 Mapping Logic

The rafping register $B 3$ is a high-speed RaM of 16 words of 4 bits When writing to the maping rezister, the four high data bits are corpared to the module number set up on the Module select D.I.I. switch, and if it matches, a is written to data bit 3 . This bit is used as the card enable bit when subsequent accesses are made to the RAM. Bit zero is a for write protect, bits 1 and 2 select which of the four $16 k$ blccks is enabled.

When accesses are rade to the main RAM, the high two bits of the address along with the addressi/address multiplex signal and the mapA/rapB select signal form the address to the mapping register. Lato bits 0 and 1 from the mapping register select one-of-four blocks vic selector $[2$, which is enabled by a logic zerc on bit 3. The block select bits, card select and Read/write are latched by fifp-flop If.

The card select, read/write and Column Address (BCA) are anded by E to produce the ReAD enable for the data buffers (on sheet 2). Th read/write signal is buffered by inverters Fi and drive the read/write busses for the RAM array via series termination resistors.

The four block select signals are used to gate the Column Addres Strobes (CAS) and Row Address Strobes (RAS) which drive the RAM arra via buffer 53 . Luring Refresh cycles, all four RAS signals are enable by gates E 2 , enabled by the latched refresh signal (LREF) from flip flop B1.

4.4 QFC2_FLOPPY_DISK_CONTROLLER_FUNCTICNAL_DESCRIPTICN
 4.4.1 INTROIUCTION

The Floppy Iisc Cortroller/Formatter uses a Nesterr Digital Fifin controller LSI. It is designed to work with CPU \#2, transferring data to and from memory by DMA on Processor 2. Once a data transfer is set up the processor ray continue processing other tasss until the interrupt for "command done" is issued by the cortroller.
4.4.1.1 Address Maf

ADERESS (EEX)	REAL	WRITE
FCED	status read	commandreg
FCEI	trackreg	trackreg
FCE2	sectorreg	sectorreg
FCEZ	datareg	datareg
FCE4/5	-	DMA startaddress
FCEE	-	DMA mode/drive sel
FCET	IMA status	

The DMA transfer bjte count is inherent in the transfer tyoe.
4.4.1.2 Commands

The following commands ray be issued to the command register to effect disc operations:-

* Restore head to track zero
* Seek to track
* Step in current direction
* Step in
* Step out
* Read (single/multiple)
* Write (single/multiple)
* Read address mark
* Read track (format information)
* Write track (format information)
* Force interrupt.

Various options exist within commands which specify step rate, head loading, address verification, and other actions desirable during the executicn of the command.

For full details of these commands, refer to the FD1771 manufacturers data sbeets.

```
4.4.2 LATA BUFFERS, DMA ADDRESS COUNTER, VERIFY COMPARATOR (Refer to drawing QFC2-01)
```


4.4.2.1 LMA Address Counters

Sizteen bit counter chain $B 1$ to $B 4$ is used to provide the address fol LMA transfers. The starting address for each disc transaction is established by writing the double-byte address to location \$FCri. Thi causes the address to be preset into the DMA address counter by mean of parallel-load strobe pulses STAL (low byte) and STA日 (high byte).
C.M.I. MAINFRAME SERVICE MANUAL - Page 23

Scanned by JB EMOND - www.fairlight.free.fr

Data is propagated from tie system data bus via latches B5 and B6 which told the data across the processor 1 phase. This latched data also become the dATA $5 R O M$ BUS via buffers AT, A8 to the floppycontroller L.S.I.
Iata written to the syster cortrol byte at \$FCrb is latched by hex Dtype flip-flop C4. DAQ, EA1 are DRIVE SELECT addressing for selecting which of four disk drives is enabled. FNQ,FNi are FUNCTION SIIFCTS, which choose one of RESET (Q0), WRITE (81), READ (10), VERIFY (11).

Pit 4 of the system control byte selects which side of the disk is teing acressed when used with dual-sided disk drives. Bit 5 is an INTERRUPT ENABIE.

4.4.2.3 Verify Corarator

A special feature of the $\mathrm{CE}=2$ is the ability to verify data from disk agalnst merory withoui actually transferring it.

EXCLUSIVE-OR gates $37, B E$ are used to compare D.M.A.derived data to data read from disk from tie controller I.S.I. data CDo-7.
4.4.3 AILRISS IFCOIING, CONTROIIEP L.S.I., DRIVE SELECT
(Refer to drawing GEcz-01)
4.4.3.1 Address Iecoding

Address range $\$$ FCEX is decoded by gates $A 4$ and $C 3$ and latched by $C 1$ The clcck for this laton (ISTB) is a derivative of processor two phase two, which makes the GFCZ processor two unique. The on-card bus coperates at $1 M H z$, half the system speed.
Addresses FCEQ-FCEZ are used by the FIIT71. Addresses FCE4-FCET are used to write to the BMA address counters and funtion select latch These are enabled by the appropriate outputs from one-of-four selecto C2.
4.4.3.2 Controller L.S.I.

The -5 volt supply required by the $\operatorname{Fil} 1771$ is derived from the -12 vol supply by a 79 L 05 voltage regulator I.C.
Inverting buffers $D 6$ are used to interface the FD1771 L.S.I controller to the disc drive cable. Incoming disc status signal TRAO (track Zero), IP (Inder Pulse), WPRT (write protect) and READ are pulled up by 150 ohm terminating resistors.
The Interrupt Request from the L.S.I. (INTRQ) is gated with th Interrupt Enable (IENA) to provide an ofen-collector interrupt signa for the system I.R.Q.
One-shot $[7$ is the 35 ms head load tirer (see FD1771 data sheet). 4.4.3.3 Drive Select

Up to four drives car re controlled ty the ofcz. The two-bit drive rumber written to $\$ F C E G$ is decoded to individual drive slect lines by one-of-four selector D4. The interface cable is driven by buffers c5. Irive reversal switch $S W 1$ is provided to allow inversion of the low order drive select bit. This is used rainly for swapping drives for troubleshooting purposes.
4.4.4 INA LOGIC
(Refer to drawirg QFCZ-83)
Data requests from the FDIP71 (DRQ) are synchronised with Processor 2 Phase z using filp-flofs IE. IS. This sets up a D.M.A. request to the processor (RDMA). D.M.A. cycles are granted by ACK acknowledge signal (from sheet 2).

Deperdirg on which functior has been requested (Reset, Read, write, 7orify decoded by D4) the required DTB (Iata to 3us), and ATB (Address to Bus) signals are issued.

Data mismatches encountered during a verify cycle are clocked through flip-iflcp D5 and can be read as the VERFFR status bit (bit ?) of status byte \$FCE?.

```
4.4.5 Data Seperator
( \(\mathrm{E} \in \mathrm{f} \in \mathrm{r}\) to drawirs GFC2-84)
```

The data seperator is used to generate seperate CIOCX and DATA pulses from the FM encoded READ IATA supplied by the disc drive.

The operation of the data seperator is best understood by refering to the tiring diagrar, drawire number QFC2-04. This shows the pulse timings representing cperation after the data seperator has been locked in phase and froper recovery is in progress.

Composite read data, consisting of both CLOCK and DATA signals, arrive at pin 5 of the floppy disc cable connector. The line is terminated by a 150 ohm pull up resistor. Three gates of E 3 are configured to Tultiplex the READ DATA to one of two faths, that is either CLK or DATA.

DATA pulses fire 'a 2.7 uS one shot (half E1) to produce a pulse as shown at test point TPi. The next fulse that arrives will be the following CIK vulse, which resets this one-shot and fires the second 2.7 uS one-shot. This tcezles the z gating to allow the following IATA pulse through, if there is one.

Initial synchronisation is achieved ty flip-flop chain D1, D2. This any ciock pulses. This occurs when the seperator is out of phase and a byte of 2iro is read. This should be read as eight clock bits with no data bits, but if the seperator is notin phase it is detected as an error condition, and the one-shots are forced to reset.

4.5.1 INTROLUCTION

The 0045 is used in conjunction with a Q025 VRAM card to provide a graphics display system. The 16 kilobytes VPAM is displayed as an array of 512 points (horizontal) by 256 lines (vertical).

It also interfaces to the 0148 Light Pen controller.
To increase graphics drawing speed, extensive use is made of special bardware functions which provide automatic address incrementing or decrementing along either or both axes.

Locations FCDO to FCDC perform store and auto-increment/aecremen functions as follows:

FCDE Just store at surrent position
FCD1 Store and Inc Y
FCI2 Store and Dec Y
FCD3 Store as byte at current Pos
FCD4 Store and Inc X
FCD5 Store and Inc X, Inc Y
FCI6 Store and Inc \mathbb{Z}, Dec Y
FCD7 Store as byte, and Inc X
FCDE Store and Dec X
FCDE Store and Dec X, Inc Y
FCDA Store and Dec X, Dec Y
FCDB Store as byte and Iec X
FCDC Load scroll latch
The rattern contained in the register stores at the particula location above may be varied to produce solids or various forms o. dotted or dashed lines on the screen.

The current position is established by directly accessing the VRAL with a dummy read. Subsequent use of the special locations then work from that position on the screen in various directions.
The byte mode operations are provided for the writing of alpha-numeri data to the screen. Note that byte mode operations only work in the vertical (X) direction. This direction requires the actual VRAl address to be advanced by 64 bytes. Byte mode in the ($\overline{\text { i }}$ horizonta. direction is achiered by storing directly into successive locations il the VRAM.

All non-byte operations store one point on the screen. What 1 written to this point (θ or 1) depends on wat is in the correspondin bit position of the accurulator used to store the data.
4.5.2 SYNCE GENERATOR, SEPERATOR AND REGENERATOR (Refer to drawing Q045-01)

4.5.2.1 Synch Generator

The Graphics Controller Card uses one of two alternative sync generator I.C.s. Both aré at location F6 and are driven by crysta oscillator 55 . Composite synch appears at $S 01$ pin 1 . This is normall

```
C.M.I. MaINPRAME SERVICE MANUAL - Page 26
```

linked on the card to 501 pin 4 , in which case the card operates off internal synch.

4.5.2.2 Synch Seperator

Composite synch or composite video from SO1 pin 4 is buffered b emitter-follower $Q 1$ and any video information is stripped off by synch separator Q2 and Schmidt trigger [4. .

4.5.2.3. Synch Regenerator

The composite synch is fed to two one-shots, F?. Vertical synch pulse are detected by looking for pulses greater than 12 microseconds wide One half of F operates with a time constant of 12 rioroseconds, s that pulses of greater than 12 microseconds will cause a 1 to d clocked into f-type flip-flop FE.
Horizontal synch pulses are regenerated by the other half of F, which has a tire constant of 50 microseconds (just less than one line of 6 microseconds).
The Horizontal Clock pulses ECLX (one per line) are used to clod
 from the top of the picture to determine the vertical positioning o the active display area. Link options are provided to adjust th vertical position, ard these are factory set for 25 lines. When the 25 lines have been counted, a Terminal count from Fig generates narrow RESFT pulse from NAND gate ra.
The Terminal Count also causes a logic \varnothing to be presented at the Dat input of D-type flip-flop $\overline{\mathrm{F}}$, which causes a logic $\overline{0}$ to be clock through on the next $E C I K$. This generates the UNBINX signal to disabi blanking and start the display.
Counters $E 10$ and $I 1 \theta$ are enabled by the $0 N B L N B$ signal and then active display lines are counted. The counters are factory preset for 25 lines of vertical display. Once the 256 lines have been counted, th Terminal Count from fig causes the blanking flip-flop fo to be se again, blanking the display.

4.5.3 VILEO GENERATION LOGIC
 (Refer to drawing Qe45-82)

4.5.3.1 Bit Clock Generation

Each line synch pulse $B C I Z$ triggers one-shct F4 to procure a puls whose width is determined by the setting of R Ti, the POSITION control At the end of the pulse, the active line begins by removing the A (Master Reset) condition from bit counters I1, D2 and D2, z ar enabling AND gate E2. The bit-rate oscillator is framed by one-shot and associated feed-back gates. The frequency of oscillation governed by the period of the one-shot which is adjustable by means RV2, thu WIDTH control. The bit rate pulses from F4 are used to clod the counter chain which counts off 256 or 512 bits per line (the car is factory set for 512). When the required count has been achieve inverter E2, 3 disables AND gate E2, stopping the bit rate oscillator.

4.5.3.2 Video FIFO and Shift Register

To compensate for the fact that bytes from memory need to be fetched at greater than 1 MHz for dispalying, a FIFC register (firstin, first-out) is used. [ata from the VRAM (RDQ-RDT) is latched by octal latch C?. When the FIFC input is not full, the IR signal causes a data request to by clocked through flip-flop C8, wich in turn generates a Shift In (SI) pulse to the fifo. This cocurs every microsecond until the Fifo input queue is full, as indicated by IR returning to a logic zero.
Data is shifted out of the FIFO to the parallel-in serial-out shift resister I 6 by SO (Shift Out) fulses coming from the bit counte: chain. These are derived from bit z of the counter, resulting in one byte being transferred from the FIFO to the shift register every eight picture bits. The shift reeister Earallel load control is strcbed during the first of the eight bit periods by decoder El. The picture information is shifted out by clock pulses from the bit rate oscillator F4.

<.5.3.3. Video Cutput

Video data from the shift register is EXCLUSIVE-ORed with the INV (Invert) signal from edge connector pin 75. With a logic 1 at this pin the picture appears normally with set bits in the VRAM displayed as bright pixels. If a logic zero is applied, the picture is inverted (negative) so that ones in vaAM appear as black pixels on a bright baceground.
The output from the exclusipe-or gate $E 3$ is serrated at the bit rate by ANDING with $\nabla S T$ (Video Strobe) pulses from Ei. This is dode to avoid horizontally adjacent dots merging to apgear brighter than vertically adjacent ones.

The serrated video is then blanked y y gating with UNBLNX to remove unwanted (inactive) display time from the display. Synch is added to the video by resistor network R37, R37, R38 and buffered for low impedance driving by transistor 24.

Composite synch (without vidoe information) is available at pin 5 of

4.5.4 SHEECT LOGIC AND DATA CONTROL
 (See drawing Q045-83)

4.5.4.1 Address Iecoding

The Graphics Controller occupies two areas of memory space. The VRAM uses 16 kilobytes from $\$ 800 \theta$ to $\$ B F F F$. The various auto-incrementing portholes use 16 bytes from $\$ F C D D$ to $\$ F C D F$. Addresses in the $\$ F C D X$ range are decoded by NAND gate A5. VRAM addresses in the $\$ 8000$ range are decoded by NAND gate D5. Both these are enabled by ANI gate I2, Which ANDs VMA (Valid Memory Address), ENBL (Enable) and BADC2X, which is used to determine which processor has access to the card.

The select signals frct this gating are latched, along with the four least significant address bits, by hex L -type flip-flop B 6.

The Read/write signal fror the buss is latched by one half of filpflop $C \varepsilon$, and gated with the latched select signals to enable the read and write tuffers B ? and A ?

The 16 auto-increment functions are decoded from the four least significant address bits by dual one-of-four selector $B E$.
4.5.4.2 Lata Buffers

Quad buss transceivers $A 7$ and $B 7$ interface the card to the system data buss. Read and write enabilng are controlled by signals generated as cescribed above.
4.5.5 VRAM ADDRISSING LOGIC
(See drawing no. G845-84)
4.5.5.1 Addressing Counters

The address being accessed within the VRAM is determined by the state of counter chain B1-BE. These are up-dcwr counters whioh provide the auto-increment (and auto-decrement) functions. The starting addres for any operation is established by any access to the RRAM. This is achieved ty the counters being parrallel-loaded by the AISTE (Addres Strore! from Sheet 3 .

Horizontal increment or decrement is achieved by pulses UPi and $D N$ clockirg the low-crder 9 bits of the counter chain. The 3 lowest bits are used to select the bit within the byte. Vertical increment 0 decrement is achieved by clocking the highest 8 bits of the counter.
4.5.5.2 Rit Selection

The 16 kilobyte VRAM card is bit addressable, that is each row of chi selects can be individually enabled.

For Bytt mode oferations, the BYEN signal is TRUE, disabling gates Als and Ele, forcing the chip Select outputs, cSo-CST, to their TRU (High) state. This causes the whole byte to be written irrespective o the current bit position within the byte.

For bit mode operations, only the bit determined by one-of-eigh decoder C2 will be enabled.
4.5.5.3 Vertical Scrolling

Counter chain $C 2, C 3$ and $C 4$ generate the 14 bit address for the vRA display operation. Each time a byte is fetched into the FIFO (sheet 2 and INCA (Increment Address) pulse clocks the counters on to the nex byte. The starting line is preset into counters Czand czat th beginning of each prame by SiNR. The starting line number is latche by C6 by writing to \$FCIC.

This number deterrines which display line will appear at the tof of the picture. Note that as the data buffers on this cardare roninverting, the complement of the desired line number must be written to the scroll latch.
4.5.5.4 VRAM Address Multiplexiag
 between processor accesses (aderesses from ocunter chain pi-as) and video display addresses (counter chain C2-C4).
Switching is done ty the BADD2X signal which is cerived from phase two of the processor to which access has been enabled.

4.6 QQES_16X FYTE MEMORY_MOLUIE_FUNCTIONAL_DESCRIPTION

4.6.1 INTROLUCTION

The co25 16 memory is used as the video graphics paM (VRAM)
for the Graphics Display system. It is driven by the categraphics fistlay controller card. The motherboard buss is broken between these two card slots so that the VRAM can be accessed by the c845 without performing LMA cycles.
4.6.2 ADDPESSING LCGIC \& ROW-COLUMN MULTIPIEXER (Refer to drawing Gg25-01)
4.6.2.1 Address Lecoding to select one of four lex blocks of remory via one half of ore-of-four selector 31. A four section Dual-in-line switch paciage is provided to allow user block selectior. The following base addresses are selected by closing one of the four switches:

Switch \#	Base Address
1	0200
2	4020
3	8280
4	$C 808$

Wher used as a VRAM for graphics applications, a base address of 0000 is used, so switch 1 should be closed.
The other half of $B 1$ decodes MA12 and MA13 to select one of four rows of mertory.

4.6.2.2 RAS/CAS Generation

Hex latch $B 3$ is clocked by $C A$ to capture the required Row Select, Read/Write and Refresh signals. When REF goes low (Memory Pefresh cycle in progress) the CS pin (edge connector pin 75 , chip select) of the rodule is forced high, disabling all RAMS. All RAS signals are forced into their active state (low) by $B 6$ for merrory refresbing.
Column address strobes are generated on every cycle. These are driven to the RAM array via inverters AT and series termination resistors.

4.6.2.3 Row/Column Multiplexers

Row-address/Column-address multiplexing is achieved by tri-state buffers $11, A 2$, which are enabled alternately by RA and CA.

4.6.3 RAM \& IATA BUFFERS
 (Refer to drawing Q825-82)

4.6.3.1 RAM Array

The RAM chifs are dynaric M.O.S. devices of 4 ag6 x arganisation. Chip selects are brought out to the edge connector in eight erougs so that they can be disatled during refresh cycles or enabled cs out a time fcr bit-rode operations. These are connected to the cS output from AE for normal Eyte mode R.A.M. operation.
4.6.3.2 Iata Buffers
)
The RAN chips have seperate data input and data outputs which are switched onto the bus of transceivers Az-A4 depending on the state of REAI.
Data frgut is always enabled; writing is achieved by taking kRITE low.

4.7 Q148-IIGETPEN-INTEREACE-KUNCTIONALDESCRIPTICN

4.7.1 INTRODUCTION

The 014ε Light Pen Interface is used to generate light per co-ordinate data from $\mathrm{H}^{\mathrm{i}} \mathrm{t}$ and Touch signals coming from the Light Pen.

It achieves this by counting the horizontal bits and vertical lines a they are displayed and latching the instantaneous values when a $H i$ pulse arrives from the lightpen. The co-ordinates are then availabl to be read from the card ty the processor.

The light pen is activated by touching the irsulated end of the pen which generates a Touch sigaal. The Interface can be configured t Eererate an interrupt wher the Touch signal is activated.

The card can also be configured so that the hit signal causes the picture information to be inverted, which getrerates, a "cursor" on the display at the position the per is currently "seeing".

The Hit signal fror the pen is de-glitched by the interiace so tha randor noise due to external interference will not causefalse triggering.

```
4.7.2 Co-ordinate counters, deglitcher, F.I.A
    (Refer to drawing Q148-81)
```

4.7.2.1 Co-ordinate counters and Latches

The current bit within the line (8-512) is counted by \subseteq bit counter chain $A \varepsilon, B 8, C 8$. The bit rate clock BITCIZ cores from the system buss and originates at the CQ45 Graphics Controller Card. The \subseteq bits of data from these counters are latched by A, $B 7$ and $C 7$ when a STB gulse occurs (deglitched Hit). The least significant bit of the count is gated onto the buss by POII, and the remaining eight bits are eateo onto the data buss by POIE.

The line counter 03 counts IINC pulses, which ncrmally come from the bit counter chain via multiplexing circuitry on sheet 3 . The eight bi line count is latched by B8 and C8 when a STB occurs, and can be read onto the data bus Ey LINE.

4.7.2.2 Hit Deglitcher

Deglitching operates by ensuring that light pen hits are repeated minimum number cf times on sucessive display lines.

Counter D4 is normally in its terminal count state, counting beire inhibited by TC being high, which forces CEP low. A Lightpen $\mathrm{A}_{\mathrm{i}} \mathrm{t}$ pulse AHIT arriving at gate E5 will RESET the counter via its Master Reset MR. The counter then procedes to count line pulses IINC. Once the desired number of lines, normally three, set up by Hopg-BOFz has teer reached, the next AHIT pulse will cause a logic 1 to be clocked intc flip-flop E6. On the next BITCIR this is propagated to the second flip-flop in $I 6$, generating a STB pulse to clock the co-ordinate latches. If no Hit occurs during the third line after the first hit
the count continues to its terminal state (iE) without a Smbeine generated.

The STE zenerating flip-flop car be locked out for the rest of the line or the rest of the frame by the peset pulse selected by multiplexer D7, which is controlled ty the two low bits of Mode Select (MSD and MS1).
4.7.2.3 Control P.I.A.

Deripheral Interface Adaptor E6 provides read/write ports for a variety of different functions. The A side is configured as cutputs and are used for Mode Selection MSO-MSG. The low nibble of the B side is used to control the nurber of lines ignozed after vertical synch when operating in external synch mode. The high nitble of the B side determines the number of sucessive Hit lines required by the deglitcher to recognise a valid ift.

The P.I.A. is also used to geterate interrupts. Two seperate interrupt cutputs are possible, one for touch and one for ift. These are generated by the P.I.A. CA1 and CB1 inputs restectively.
4.7.3 Address Lecoding, Timer and Lata Suss Control
4.7.3.1 Address Iecoding

The Light Pen Interface occupies 1ϵ bytes of memory space from $\$ 2200$ to \$ 22 LF . Addresses in this range are decoded by NAND gate A1. As well as VMA (Valid Merory Address), one of the Processor Address signals may be gated in at this point by link option $\$ 1$. This allows the card to operate either with both processors or processor unique. The iadx signal is latched by hex D-type flip-flop Az, along with R/W (Read Write) and the low four address bits.

Further address decoding provided by $C 1, C 2$ and 32 generate the enable signals required to read co-ordinates, POIL, POIB and LINE and to enable the chip-selects of the F.I.A. and mimer.

4.7.3.2 Timer

An M6840 Timer is provided for general syster use. This device contains three irdependent 16 bit counters which can be configured under software control to count external events or internal clock pulses. Counter 1 is clocked by LINC to count Lines, counter 2 i clocked by FR to count frames, and tirer 3 is clocked ky a 1 MH system timing signal to count microseconds.

For full operational specifications of the 6840 refer to th manufacturers data sheets.

4.7.3.3 Data Buss Interface

The card is interfaced to the system data buss by two quad bus tranceivers. These are configured so that data normally passes fro the system to the card (as used for \forall ? 1 Tr operations). During a cycle the direction is reversed by the READ signal so that data can be rea from the card.
C.M.I. Mainframe service mandal - Page 34
4.7.4 MCIE SELECTICN ANL EXTERNAL SYNCB.
(Refer to drawing Q1』6-øZ)
4.7.4.1 Mode Selection

Seven bits of mode cortrol are used ty the card and must be configured
by the driving software. The bits and their functions are:
MSQ.MS1 Select Eit Lcckout-
$\varepsilon=$ Lockout for rest of frame
$1=$ Lockout for rest of line
$2=$ No lockout
MS2, MS3 Select Syncraronisation Source-
$a=$ Graphics Controller Card
$1=$ T.V.T. Card
2= External Composite Synch
MS4 $\quad \boldsymbol{=}=$ Touch for Eit
MS5 Graphics Invert
me Cursor cr
rode slect bits θ and 1 are dealt with or sheet 1 (above).
MS2 and MSz are used to control two dual one-of-four data selectors, If and E8. Within Line Reset (WLP) pulses are rultiplexed between the Graphics Reset input from the buss (GR), TVT Synch input from the buss (TVTSIN), ard Local Synch from the Synch Seperator (IOCSYN). The Bit Clock (EITCLZ) is multiflexed between Graphics Bit Clock from the cuss (GEIT), TVT Bit Clock from the buss (TVTBIT) and a $4 M H z$ clock generated by gatiog the BCA and ECAS system timing signals. Line Increment (IINC) is rultiplexed between Line Finish from the bit counter (LIIN), TVT Iine Synch from the line synch seperator driven by the TVT Synch (TVISYN) and Local Line Synch pulses from line synchs seperated from the external composite video ingut (IOCSYN).
4.7.4.2 External Synch

An external composite video source can be used to symchronise the lightpen interface.

The $\nabla i d \in 0$ is fed to amplifier Q2, Q3 which raises the amplitude to about z volts p-p. The video is then stripped by Q1 to provide a synch-orly signal to Schritt trigger e7. This synch is then inverted by E4 to provide the Local Synch signal LOCSYN. Vertical synch pulses are seferated from the composite synch by one-shot E3 and flip-flop E2. The one-shot is configured to generate an output puls about 10 milliseconds wide for each negative-going input pulse. If the pulse finishes after the one-shot times out a logic one is clocked through the flif-flop, signalling a \quad ertical synch.
The vertical synch presets the second half of flip-flop E2causing the Q output to go high and a pulse to be generated by D2. This becomes the Frame Reset pulse FR. The line counter (sheet 1) is reset to zero, and incremented each line. When the start line count established by mode control tits STQ to ST3 matches bits 2 to 5 of the line count, C.M.I. MAINFRAME SERVICE MANUAL - Page 35
exclusive－or gates $D 6$ generate a Reset to flip－flop 52 ，which in turn generates a second frame reset pulse，reseting the ine counters．

4．7．4．3 Hit，Touch Receivers

The Eit and Touch lines from the lightpen are T．T．I．compatible signals，asserted low．They are terminated at the receiving end by resistor networks R19－R22．Depending on the state of mode select bit 4 （Touch for $⿴ 囗 ⿱ 一 一 廾 彡$ ）the Touch signal may be ANDed with the Eit signal to gecerate a valid Hit pulse（ABIT）．

Mode select bit 6 （Cursor）determines whether the Invert output will be strobed by $\begin{aligned} & \text { itt fulses to form a cursor．}\end{aligned}$

Mode select bit 5 causes the picture to be inverted（negative）when set to a 1.

Note that gating is arranged to disable the cursor when the touch is asserted．This is to ensure that the pen has something to see＂when activated．

4.8 CMIR2＿MASTER＿CARD＿FUNCTIONAL＿ITSCRIPTION
 4．8．1 INTRODUCTICN

The cmigz Master Card performs a variety of punctions includinz control of the eight channel cards，analogue to digital conversion for sound sampling，and timer functions for sequencer and Music Composition Language．It occupies the first slot from the left in the card cage of the C．M．I．Mainframe．

This card occupies 64 bytes of processor address space．It can be accessed by either processor．The address map is as follows：

ADRESSS＿（Bex）
E000－E01F
E920
E021
E022
E023
EQ24
ED25
EP26
E22？
E028
Ea2s
E02A
ER2E
さのこロ
E031
5032
EC3z
E034
E038－503F

FUNCIICN

CEANNEI CARD FEGISTERS
CHANNEI MASK［ATA PIGISTER（P．I．A）
CEANNEL MASK CONTROL REGISTER（P．I．A．）
MASTER TUNING DATA REGISTEP（P．I．A．）
MASTER TUNING CCNTRCL REGISTIR（P．I．A．）
A．I．C．DATA EIGH EYTE
A．D．C．DATA LOW EYTE
EALT PROCESSOR 1
UN－EALT PRCCESSOR 1
LEVEL CCNTROL DATA REGISTER（P．I．A．）
IFVEL CONTROL CONTROL REGISTER（P．I．A．）
FILTER CONTROI IATA REGISTER（P．I．A．）
FIITER CONTRCI CCNTPOL REGISTER（D．I．A．）
P．I．C．U．ENAEIE CURBENT STATUS
INTERRUPT PROCESSCR 1
CIEAR PROCESSCR 1 INTERRUPT
INTERRUPT PROCESSOR 2
CIEAR PROCESSOR 2 INTERRUPT
TIMER REGISTIRS（6840）

4．8．1 Address Iecoding，Changel Selection，VRAM Switching，Master Tuning Register． （Refer to Irawing CMIø2－g1）

4．8．1．1 Address Decoding
Addresses in the range EODg－EgZF are decoded by NAND gate A1．Cnce addressed，the SEL（Select）signal is latched by D－type flip－flop Ci． Channel card addresses in the range E000－E01F are decoded by NOR gate C2 to produce CESEL（Channel Select）．

4．8．1．2 Channel Selection

All eight channels occupy the same address space and channel selection is achieved by estabilshing a mask of desired channels in the bide of P．I．A．BC9（Channel Mask）．NAND gates A10 and B10 enable one or more channels when a wRITE to a channel card address is performed．It is not possible to read from more than one channel at a time without buss contention，so circuitry is provided to protect against crashes which may result from a software bug which causes inadvertant reading from multipl esealrebehys
if more than one bit is set in the channel mask. If a REAT is atteroted under these conditions, the CHSEL is inhitited.

4.8.1.3 VRAM Switching

The Video Ram of the Graphics Display System occupies 16 Gilocytes of address space frcm $82 \ell \subset-B F F F$ (hex). In order to maze this address space available for use as system RAM when the VRAM is not beins accessed, switching is provided by the Master Card.

Addresses in the range $\delta X X X$ during Processor 1 cycles are decoded by 4-input $A N D$ gate E1. These cause VREN to be asserted, which disables the VRAM and erables the RAM via NCP gate D $£$ and inverter A8. Thi means that Processcr 1 gever accesses the VRAM.

If control bit CE2 of P.I.A. BCO is SET, the VRAM is permarently disabled and the aAM enabled. To access the Var, c 32 must first bi CLEARED.

4.8.1.4 Master Tuning Register

The B side of P.I.A. $B C \subseteq$ is configured as outputs, the data written t it being used as Master Tuning control (MTZ-MTP) by the Master Pitc) generator (Shét 2).

4.8.2 Inter rupt Cortrcl, Master Oscillator, Merory Cortzol
 (Refer to Irawing criez-x2)

4.8.2.1 Interrupt Control

The eight charnel cards generate Processor 1 interructs which ocuup. the eight interrurt levels supported by the C.P.U. Conirol Card Ge32 To suprort the remairirg interrupts, a second P.I.C.U. (Programmable Interrupt Contrcl Qnit) is provided on the Master Card. It is acscaded with the one on the Gz3? card.

The D.I.C.U. C \quad normally provides the three bighest pricity interrupts to processcr 1. These are, IPGSYN from the geybcar A.C.I.A., TIMINT from the 6840 timer, and interprocessor interrupts The current interrupt priority level is written to the P.I.C.U. by WRITE to EZze (hex). If an interrupt of a bigher priority arrives, th INT output of the P.I.C.U. Will be asserted (low), setting the ilip flop formed by gates $A 10$, B2 ard zenerating a Processor 1 Interrup Request (IRQ1). The level of the interrupt is presented to th Interrupt Address luss IAध1-IA21. This address is used as bits 1 to of the $\begin{aligned} & \\ & \text { emory } \text { address when fetching the interrupt vector. }\end{aligned}$

The interrupt latch is cleared when a new interrupt status is writte to the F.I.C.U.

4.8.2.2 Master Oscillator

Transistor $Q 1$ and crystal $Y 1$ form a 34.29 MEz oscillator from whicl the channel card pitch reference is derived. Fip-flop Fio divides th output of the oscillator by 2 to provide a symetrical square wave a 17 MHz. This is fed to rate multipliers Cig and D1g, which give small range of frequency control, as determined by the data from th

Master Pitch register (sheet 1). The output of these rate multipliers is fed to all chanrel cards. vid buffer A?.

4.8.2.3 Memory Control

Counters I8 ard CB are clocked by the 17 MHz signal from the crystal oscillator and their output addresses timing ROM 38. This ROM generates the timing signals required by the waveform PaM on the Channel Cards. They are SRif (Refresh), SRA (Row Address), SRAS (Row Address Strobe), SCAS (Column Address Strobe). The outputs of the ROM are latched by quad flip-flop 37 and buffered onto the buss by A.

4.8.3 Analogue to Digital Converter
 (Refer to Drawing CMIDZ-03)

The Analogue to Digital converter is an AD5?1 (IT), of 16 bits accuracy. The sample rate is determined by the frequency set up by the Chandel Card in the Channel 1 position of the Mainframe. This clock arrives at the Master Card edze cornector pin 44. ADM (A-I Mode) is normally low, enabling the $A D C L K(A-L$ Clock) through to one-shot D2. This cne-shot generates the 2 uS pulse required by the AD571 to start a conversion cycle.

When walting for a conversion cycle, Processor 1 balts itself by accessing Eø26 (hex). This senerates a JAM strcbe, CIItring filp-flop Dz which causes HiL (Ealt) to 30 low.

When the conversion is complete (approximately 3ℓ microsecords later) the DR (Data Feady) output of the ADST1 goes low, forcing the output of NOR gate LS Eigh, clocsing the data latches C5 and C7, which capture the data ready for reading by the processor. At the same time as the conversion is corpleted, flip-flop D3 is clocked, setting it. The c output is forced Low again, removing the EALT condition from Processor 1 and allowing it to run again and read the $A-I$ data. If Drocessor 1 is held halted for more than 100 m, , ore-shot d2 times out, allowing it to run again. This is tc protect against system hangup in the event of an A-D failure.

The audio signal arrives at the Master Card at pin \subseteq of the 10 -way ribbon cable plugged into the front of the card. Sample-and-hold ig is gated y y the DR (Data Ready) sigalal from the DAC to ensure that the signal input to the LAC remains constant while a conversion is in progress.

4.8.4 A-D Filter System
 (Refer to Drawing CMID2-94)

Low-pass and high-pass filters are provided for limiting the bandwidth of the signal being fed to the Analogue to Digital converter. The cutoff points of each are individually controllable.

Signal arriving at the Master Card at pin 1 of the 10 -way ribbor connector is attenuated by MDAC F4. The attenuation is controlled by the data written to the side of P.I.A. DE5. Op-amp F3 in combination with CMOS switches E1, F1, F5 form the low-pass filter. The cutoff frequency is determined by the resistors selected by the switches, which are addressed by the low four bits of the B side of P.I.A. If5.

The output of the low pass filter is available for monitoring at test point TBs.
Cp-amp in together with switches F7, Fe and Fid form the high-pass filter. The cutoff point of this filter is condoled by the high four bits of the E side of P.I.A. Ins.
) The plus and minus supplies for the CMOS switches are provided by zener diodes Di and $Z[2$. 5.6 volt zeners are used so that the supplies to the switches will excede E volts to prevent distortion of the signal which car te up to 12 volts peat-to-peak.

4.G.1 INTROLUCTION

The channel Cards are the audio generation and manipulation syster of the C.M.I.

Up to eight cahnnel cards may be installed. All eight cards are identical and interchangeable. Their assienment (i to 8) is a function of which slot they are clugged into in the C.M.I. Card Cage.

Fach Channel Card contains 16 kilobytes of waveform Fam in which sounds are stored. Circuitry is provided to clock out this memory to a digital to analogue converter, aiso located cn the charrel card.

The speed at which the rerory is clocked out, and bence the pitch of rote produced, is controlled by a 12 bit number written to the pitch register on the card.

A tracking filter follows the DAC. This autoratically follows the frequncy of the charnel, filtering out unwanted noise at a certain number of octaves above the fundemental frequercy. The ratio of the filter cutoff to tie fitch beirbg played is controllable by writiog to the filter cortrol latch (used by the FilTer control on Page 7 of the C.M.I. system scftware.)

The channel card occupy 32 bytes of memory space from rody to E01F: The 16 kilobytes of waveform RAM are accessed by a single porthcle at EqDe. Auto-incremerting hardware causes data to be read or written to each byte sequentially as repeated accesses are made to this location. The starting byte number is establlished by witing to a special register.

As all eight charnels live at the sare address, a mechanist for selecting which changel(s) are accessed is provided. Tils is controlled by the Channel Mask Rezister, located on the Master Card CMI 2 .

Audio ortput is taken from the 18 -way ribbon connector on the front of each channel card. This is in the form of a talanced siznal. The signal is also available at the test points at the front of each card. Refer to the Iiagnostic Software section of this manual for full details.

Power for the analogue cicuitry (+ and - 15 volts) is fed to the Channel Cards via the same ribbon cable.

Letails of Channel Card operation are proprietary information which is not available outside the fairlight factory in Sydney.
4.10 CMIQ4 AULIOMCDULE_ = FUNCTIONALITSCRIPTION

4.1ネ.1 INTRCDUCTICN

The Audio Module interfaces the audio input/output conectors on the rear panel of the C.M.I. mainframe with the appropriate internal circuitry.

Functions include buffering of audio outputs from the channel cards, generction of a mixed line outrut, provision of a moritor amplifier for driving a monitor speaker or headphones, processins of synch input and output signals, and supply of power to the channel cards.

```
4.10.2 MIXEP, LINE DRIVERS
    (Refer to Irawing CMI04-81)
```


4.18.2.1 Mixer

Audio from the charnel oards arrives at the Audio Module by means of a fifty-way ribbon cable. Tins cable is split down to eight seperate groups which plug into the channel cards.

The sizal is balanced, to minimise ncise pickup. Each channel is received by a differeatial amplifier which removes cormor-rode noise. The changels are ther rixed down by fight resistors feeding a virtualearth summing amplifier IC5 to form the Monitor output.

4.18.2.z Line Irivers

All eight channels, plus the monitor outrut, are buffered before being fed to the appropriate output via a 330 ohr isolation resistor. An opamp inverter provides an anti-phase signal for each balanced output.

```
4.10.3 MONITOR AMP, INPUT AMPS, SYNCH IN/CUT
    (2efer to drawing cMig4-g2)
```


4.10.3.1 Monitor Amplifier

Signal from the output of the riser (sheet 1) is fed via the Monitor poterticreter (on the rear panel of the Mainframe) to the monitor amplifier. It arrives at pin 30 of the edge connector, from where it is arplified by audio arplifier IC12. Power boost for this amplifier is provided by transistors Q1 and Q2.

Pulses from the click Monitor potentiometer are mixed into the Monitor amplifier by resistor Rz and capacitor Ci4.

4.10.3.2 Input Amplifiers

The Microphone Input is amplified by op-amp IC7. The noise of this stage is reduced by using transistors GB_{z} and Q4 as the gain elements of the op-amp. Transistors Q5 and Q6 form a current source for the differential input stage.

Iine infut is buffered and un-balanced by differential amplifier ICB.

Cutput from the Mic pre-amp or Line incut amplifier is routed to the Master Card depending on the setting of the MIC/IINz switch on the rear panel of the Mainframe.

After filtering on the Master Card, the audio signal is returied to the Audio Module via pin ε of the ribbon cable connector Ser. It is buffered by op-amp ICS and fed to the FILTER CUT connector on the rea panel, as well as the INT/EXT AIC selector switch.
4.10.3.3 Synch In/Cut

The Click signal fror the Master Card is a symetrical square wave. It arrives at pin $?$ of SO2. It is filtered by ICll and associated components, resulting in a zulse waveform winich is fed to the click Output on the rear parel, and also the Cliok potentiometer on the rear panel.

Synch input to the Manframe arrives at pin 72 of the edge connector S03. IC15 is corfigured as a Schmitt Trigeer whioh squares up the incoming waveform and rejects noise ty virtue of its hysteresis. Zener diodes ZDE and ZIZ clip the outout of the op-amp to limit the
 ZD1 further limit tie excursions of this signal to approximately +4 and -.7 volts, suitable for feeding to the Master Card via ribbon cable connector Sø2 pin 6.
4.16.4 EOWER SUPEIY

Raw D.C. supplies of approximately + and - $2 \varnothing$ volts arrive at the card via connector pu4. When power is first applies, relay RLA is open and no power is fec to the regulator ICs. As capacitor cso charges, the current through transistor $Q 8$ increases until the voltage accross resistor Fig8 excedes $\cdot ?$ volts. Transistor Q ? ther switcees on, pulling the base of $\& \in$ up to the supgly, which causes relay aid to close.

Power is then applied via RIA1 and RLAZ to the regulator ICs ICIz and IC14.

The purpose of this delay is to mute the audio outputs until the processcr system has started up and initialised the channel card hardware.

4.11.1 INTROIUCTION

The D.C. Power supely grovides requlated power for all the circuit boards within the C.M.I. cari cage, the floppy-disk drives, the rusic keyboard and alfhazureric keyboard.
Dower for the aralogue (audio) circuitry is provided by regulators located on the Audic cari CMIO4, mourted inside the rear parel of the mainframe. This provides plus and minus 15 volts for the Charnel cards, Master Card and Audio card. The remainder of tre dizital electronics is surciled by refulators mounted or the rear of the card cage. This provides $-5,+12$ and -12 for the caris within the card cage, and +24 and +5 for the floppy distix dives.
4.11.2 UNREGULATEI SUPDIIES
(Refer to drawicg MCz21-z1)
The Unregulated Supply asserbly is constructed as an intergral jart of the C.M.I. Card Cage ミssembly. It comprises a transformer, rectifiers and filter capacitors. A schematic diagram of the asserbly is shown on drawine MCeR1-61.
Transformer $T 1$ is supplied with A.C. mains via a fuse, mains switch, line filter and voltase selector. A 18 V.A.C. winding supplies bridge rectifier IB1 to give 10 volts raw I.C. across Ci at its full load of 20 Arps raxirum. Its fuse is located or the regulator assembly P.C.Board.

A 28 V.A.C. Winding feeding biidge rectifier DB2 provides +40 volts, smocthed by cz and fused by F2. A centre-tapped 32 V.A.C. wirding in conjunction with 233 supplies plus and minus 20 volts to smoothing capacitors $C 3$ and $C 4$ and fuses Fz ard F4 respectively.

A 33 V.A.C. winding feeding bridge rectifier DB4 and capecitors $C 5$ and CE provide the flus aud minus 20 volts D.C. to the regulatcr on the Audio Card CMIE4.

4.11.3 REGULATOR 5 VCLT 18 AMP
 (Refer to drawing ©PSA-g1)

This regulator is part of the regulator assembly located at the rear of the C.M.I. Card Cage.

ICi is the regulating element of the circuit. Transistor ç senses the current drawn by IC1, driving parellel transistors Q3 to Q6. Fqual current sharing is ensured by emitter resistors R7-Rig.

Current limiting is frovided by germanium transistor Q1, which uses the drop across sensing resistor Ri as a current sense. Short circuit current is limited tc approximately 20 Amps, regulation falling of above about 18 amps.

Over-voltage crowbar protection is provided by SCR1. If the output of the 5 volt regulator rises above 6 volts zener diode $2 D 1$ conducts switching on the S.C.R. This protects components using the 5 Volt
C.M.I. MAINFRAME SERVICE MANUAL - Page 44
supply in the event of regulator malfunction or an inter-supply shortcircuit. If the crowbar circuit does switch on, 15 Amp fuse $f S 1$ will blow.
$4.11 .4+12$ VOLT, 24 VOLT SUPPLIES Refer to drawing GPSA-92)

The plus and minus 12 volt supplies are simply regulated by integrated circuits IC and IC4 respectively. The +12 volt supply is currentlimited to about two amps by the regulator I.C. IC z. The -12 volt supply is current limited to about 1 amp by regulator I.C. IC\&.

The 24 volt supply is regulated by integrated circuit ICZ Transistor $Q 7$ boosts the available current to about 3 Amps. Zenger Ifode 2 pl provides a voltage drop to protect the regulator I.C. from excessive input voltage.
C.M.I. MAINfRAME SERVICE MANOAL - Page 45

```
4.12 GAZE FRONT PANEL CCNTROL
### DATA NOT YET AVAILABLE ###
```

)
C.M.I. MAINFRAMi SERVICE MANUAL - Page 46

5.0 TRCURLESGCOTING

5.1 Introduction

The C.M.I. system relies on a complex interaction of hardware and software for proper operation. It is of ten difficult to differentiate between hardware faults, software tugs and operator errors. Befcre attempting repair of the Mainframe, establish that thefalt is definitely a hardware fault in that unit. If in doubt, try the same series of operations on another system of the same revision level to ensure it is not a software bug and check with ine users Manual to ensure it is not operator error.

Refer to the C.M.I. System Service Manual for information on how to ascertain that the fault lies within the Mainframe itself and not one of the other syster units.

Due to the complexity of the system, this manual does not attempt to present an exhaustive list of faults ard repair procedures. Instead, the detailed descriptions (above) should provide service personnel with a thorough understanding of the hardware so that the problem area can be identified.

Extensive diagnostic software is provided to thoroughly test most of the hardware. Of course, in order to run the diagnostics the computer section must be running at least to the stage of loading and executing the software. Use of the diagnostic software is described in detail in section ϵ (below).

A guide to troubleshootine the major conconents of the Mainframe follows:

5. 2 Power Supply

A fault in the power supply will usually result in complete failure of the system (the computer does not run, so no ressage is displayed or the screen). An exception to this is a failure of the analogue supply (+/- 15 volts to the channel cards, master card and audio card). I this case, the C.M.I. should appear to function normally although ng sound will be produced.

Three I.E.D.s are provided on the front panel of the C.M.I. ts indicate the state of each of the digital supplies, $+12,-12$ and volts. These are the supplies to the cardsin the card cage, supplie by the Motherboard. The I.E.D.s will not light if the relevant suppl. drops below two-thiras of the nominal voltage. Note that these I.E.I. pick up their supplies via the ribbon cable connected to the Q03 card, so it is possible that a faultin the Qe32 could cause th L.E.D.s to malfunction.

Fuses for the +24 volt supply (disk drives) and +/- 12 volt digita supplies are located on the transformer cover plate at the lefthan end of the card cage. They are accessed by hinging down the fron panel. The $+/-12$ volt fuses actually protect the raw D.C. supply t the 12 volt regulators (see 4.11 , OPSA below). As this raw supply als powers the music and alphanumeric keyboards, a fault in either o
these units couid blow the fuse. The $+/-12$ volt supplies are surrent limited so that a fault on circuit card will not normally blow a fuse.
The ran supply to the +5 volt regulator is protected by a 15 amp cartrige fuse mounted on the regulator P.C. card. This fuse should never flow except in case of catastrophic power supply failure. See 4.11 CPSA (below).

All other fuses are loceted on the rear fanel of the mainframe.
In the efent of a power supply fallure, te suspicious that the failure may have been caused by a malfunction elsewhere, or incorrect setting of the rains voltage selector (on the Mainfrare rear parel).
5.3 Computer Section

A failure in the computer section ray result in permanent or interiftent malfunction of the system.
If the system will run to some degree (i.e. load a disk and respond to corrands) the diagnostic software described below should be run to localise the fault and the offending card can then be replaced.

If the system will not run at all (will not load the diagnostic disk start by checking the following:

1) Halt/Mun switches on the front panel must be in the Lowr (FUN) position.
2) Terminal speed seting on the front parel must be set t 9 k 6.
z) Mains voltage selector on the rear panel must re se
3) Power must be applied, as indicated ky the three the front fanel.
E) The Sysyter Disk must te ingood order (as indicated b testing in another system) and insertミd correctly.
If these items are all in order, but the syster disk will not load confirm that the fault lies in the Mainframe by disconnectin everything except the A.C. supply from it and trying to load the dis again.
If the disk will still not load, the system should be "stripped down until operation is restored. Remove cards in the following order attempting to load the disk after each stage:
4) Remove all eight channel cards (CMI-01)
z) Remove the lightpen card (G148)
5) Remove the master card (CMI-82)

If the disk will still not load, substitute the remaining cards wit snown good spares one at a time. If the fault persists, the proble must be in the power supply, disk system, rotherboard or cabling Refer to Section 7 (Motherboard Signals) and Section 8 (Externa Connections) below, for details of motherboard and external signals.
C.m.i. mainframe servict manuai - Page 48

The risk system consists of three sections - the floppy-di controller card orcz, interconnecting cables, and the two floppy-di drives therselves.

A fault in the controller card or cailing will generally result hard disk errors or total failure to access disks. Soft irtermittent disk errors will usually be caused by a faulty misaligned drive.

A togale switch rounted on the front edge of the controller ca reverses the drive select signals to the drives so that the logic drive numbers can te swapped for diagnostic purposes. Tor example, a disk error is repcrted during boot-load, the drives can be swapp (switct down) and the system disk inserted in the right-hand drive. it then loads sucessfully, the left-hard drive is fality. If the fau persists, the fault is in the cortroller, cabline or power suppl unless the system diskette itself is faulty.

Refer to the Fairlight Disk Syster. Service Manual for full details disk drive maintenance.

5.5 Channel Cards

Incorrect operation of individual channels is caused by afaul channel card or aucio card.

Comprehensive diagnostic software is available for testing the change cards. The digital circuitry is tested automatically, and the analogt circuitry requires waveform measurement using an oscilloscope.

Channel selection is Eerformed by the Master Card (CMI-民2). A fault this area will show up as a digital failure of one or rore channe cards when the diagnostic software is run.

In case of an audio fault in one particular channel, it is not alway clear whether the fault lies in the chanrel card or the audio card This can be resolved by swaping the suspect channel card with a goc spare, or with another gocd channel card in the same Mainframe. If th fault remains in the sare channel output, the fault is in the audi card, or possibly the ribbon cable connecting the chenael card to th audio card.

5.6 Master Card

Special Master Card diagnostic software is provijed to test al functions (see section 6 below). The Master card is responsible fo the following major functions:
5.6.1 Channel Card Selection

Faulty channel card selection will show up as channel card failures When running the digital tests of tige Channel Card diagnostics. If a channel card fault is detected by the diagnostics, ard the fault persistes when the card is changed, then the master card may be at fault and should be exchanged for a good spare.

5.6.2 Charnel Card Master Clock

The crystal oscillator located on the master card provides the master Fitch reference and memory timing signals for all chanael cards. These sigrals for all eight channel cards are bussed tosether. A fault in this area will cause identical faults in all channels, manifested primarily as Merory or Pitch test failures.
5.6.3 Analogue to Ligital Conversion

Improper operation of the Scurd Sampling (Dage ε of the C.M.I. System Sof tware) will be caused by a fault in the Master card, Audio Card, or interconnecting cabling.
As a first step, the Master Card should be exchaneed with a good spare. If the fault persists, the Audio Card should be replaced next. Finally, the intercornecting carles should be checked using the Mainframe Wiring Iiagram (Irawing number mCeDi-gi), Audio card Functional Description and Master Card Functional fescription as a guide.
5.6.4 Exteral Synchronisation and Timer

Inproper operation of the synch Input or Click output functicn (M.C.L. or Page ©) can result from facit in the Audio card or Master Card, or the 10 -way ribbon cable connecting the two together.
Ifagnostic software is profided for testing the operation of botb the input and output. Refer to section (below) for full details.
The fault should be isolated by replacing the Master Card dith a good spare, followed by the Audio Card, and finally the interconnecting cable.

5.7 Audio Card

The Audio Card (located inside the rear pare of the mainframe) provides buffering for the analogue signals entering and leaving the Mainframe, as well as regulating the $+/-15$ volts power supply to the analogue circuitry.
The following types of fault will usually indicate a faulty audio Card:

1) Audio faults appearing in a particular channel which are not cured by exchanging chancel cards.
2) The Mixed Line Output does not function properly, although each individual charnel output is correct.
3) The Monitor speaker output or Headphone output is fault.
4) Sound sampling using Mic input does not work, but the fine input does (or vice versa).
The following faults may be caused by an Audio card malfunction or some other fault:
5) Synch input or output does not function properly.
6) Analogue power supply (+/- 15 volts) incorrect.
7) Improper opereration of an individual audio channel.

G. A DIAGNOSTIC SOFTWARE

6.1 INTROLUCTION TC DIAGNOSTIC SOFTWARE

This secticn describes the set of diagnostic test programs available on disc for testing and debugeine all the plug-in circuit modules of the Fairlight Computer Musical Instrument.
E.1.1 Running the Diagrostic Iisc

The diagnostics run under the GLOS operating system. They are therefore supplied on $\begin{gathered}\text { QDOS system disc which should be loaded into }\end{gathered}$ the cMI instead of the usual CMI system disc imfediately after powerup or RESTART.

As soor as the disc drive door is closed, the CMI will load QDCS automatically and display a sign-on message givirg version and revision numbers.

The. QDCS prorpt will then re displayed. This is just an equals sign " =" on a line of its own. This indicates that the computer is ready to accept a command.

For further, details of the QDCS operating system features, refer tc the GDOS User's Guide.
6.1.2 Punaing the Test Programs

Most of the diasrostic programs make use of a common command interpreter for operator control, so there is a uniform command syntax erployed throughout, and several test options availatle as standard. Tests ray te run by typing

where the <test nare〉 is as describedin each section. Options are of the form
$\langle 0\rangle=n \quad$ where $\langle 0\rangle$ is a single character and n is an integer.
Standard options are

Some tests, which require a waveform to be wait for the spacebar to be pressed or proceeding to the next
test.

To obtain a reminder of what tests are available from tine curren test program being run，type

IIST〈CR＞
To repeat the last test，just type R〈C？〉

If an error condition occurs，a moderately helpful message is printe on the console and the program returas to the command interpreter Successful tests terminate withcut comment and return to th interpreter or proceed to the next test as soon as completed．Certal tests require the user to check waveforms with an oscilloscope an will nct terminate cr proceed to the next test until the syacebar i pressed．

6．1．3 Measurement Tolerances

A tolerance of $+/-i E_{\%}^{c}$ is acceptable for rost voltage or frecuenc reasurements．Filter attenuation levels are barder to control and ra be subject to $+/-2 Q \not \subset$ variation．Chanses to andoecircuitry i desizn revisions may also effect level measurements．Values quote here are valid for the revisiors referred to ir the text．

6．2 Channel Card Tests

A program for testing CMI channel cards is CMITST．CM which can be run by typing

CMITST

with the CMI diagnostics disc in drive a ．
It can test chanrel cards individually or up to eisht at a tire． There are eight different tests within CMITST，which each exercise a different gart of the charinel card．

The standard command interpreter is used so the IIST and R commands，and P and N oftions are available as descrited in the general introduction．Tests are run by typing

〈test name〉［，〈0ptioni〉，＜option2〉．．．，〈optionN〉］＜CR〉
A＂C＝n＂opticr is avilable for all tests，which specifies the channel rumber（s）to be tested，in the range 1 to ε ．Iefault is 1 ． Multiple channel numbers can be specified separated by commas or a hyphen．

$$
\begin{aligned}
& \varepsilon \cdot g \cdot \text { FIIT;C=3 } \\
& \text { FIIT;C=1-4 } \\
& \text { FIIT; } C=2,5
\end{aligned}
$$

Cne side cf the balanced analoz output of the chacnel card is available at test roint ε（TPE）at the front of the card．The row of test pins is numbered from 1 at the bottom．Pins 1 and 2 are connected to digital ground， 3 and 4 to analog ground．The other side is availatle at test point 5．Measurements quated in this text refer to TPE．However if a complete CMI is being tested，it may be more for how to connect it to the cMI and an oscilloscope）yaveforms observed from the tester will be of the same form as TP6 but different levels．Befer to the waveform Sumary（section 6．11）for Analog Tester levels．
the Charnel
Note that Fairlight IC NOT release schematics of Card as all refairs are done on a return－to－factory basis．

Board component references are for the Revision 7 chanel card and this section describes CMITST Revision 1.3

CAUTION：WHENEVER CEANGING OR REMOVING TEE CMI MASTER CARD OR CEANNEI CARIS，OR PLDGGING RIBBON CABLE CONNECTORS ONTO THESE CARIS， ALWAYS SWITCH OFF POWER FIRST．FAIIURE TO DO SO WIIL ALMOS？ CERTAINLI CAUSE EARDWARE DAMAGE！

6．2．1 Filter Tests

Test name：FILT
No．tests： 15
Purpose：Tests the basic playback facility of the channe card and the software－controlled trackin filter．

BASIC SYSTEM CHECK PROCEDURE

The following tests perform tests on the basic CMI hardware. The hardware components tested are:

- Diagnostic diskette
- Main memory
- Master card
- Channel cards
- Interrupt hardware
- Disk drives
- Video

See later sections for additional tests.
Procedure:
CHAIN DISKETTE (this test checks the diagnostic diskette)
CHAIN CMITEST (tests Memory, Master, Channels, Interrupts)
DSKTST (tests disk drives - see Service manual)
CHAIN AUDIO (tests each channel for an audible output)
CHAIN VIDEO (tests graphics/lightpen card;
NOTE: After typing "CHAIN VIDEO" press C,
this causes a completely green screen,
the lightpen can now be pointed to the screen and tested.
Press "ESC" key, this starts the Video Ram test, which causes random patterns on the screen.

NuTE: if any of tine above tests yererate an eriui, an appropriate error message will be displayed.

SPECIFIC TESTS

These tests check specific CMI cards or optional hardware. These tests cover the hardware listed in the above section plus

- AIC card
- Printer
- Channel card analog hardware

Procedure:
CHAIN AIC

PRINTER

CHAIN ANALOG
(tests the inputs and the outputs of the AIC, NOTE: the inputs and respective outputs must be connected together.
(produces a diamond shape, made out of a regular pattern of characters. Press "ESC" key to stop the test)
(tests the analog hardware of the CMI, see Service manual)

For each test a fundarental sine wave is loaded into two segrents of waveform memory, and a program-specified harmonic is loaded into the following two segments. The segments are then replayed continucusly (by segrent loopine) with the tracking filter cutoff set to achieve approximately a $2: 1$ attenuation between the fundamental and harmoric. The output level of the fundarertal at TPG should be $3.4 \mathrm{~V} \mathrm{p}-\mathrm{p}$.
bar After each of the 15 tests the program will halt until the space ber is hit so that the channel card outrut can be observed.

Test name: FILTD
No. tests: ${ }^{3}$
Purfose: Tracking filter test with operator settable parareters.
Options: F=n Filter seting. Range 1-15, default 8 $\mathrm{H}=\mathrm{n}$ Earmonic number. Farge 1-32, default 16

This is basically the same as FIIT, but with additional operator control. The fundarental used for tests $1-3$ are 200 Hz , 10\&0日z, and $500 \ell E z$ respectively. The same frequncy shifting is used as in the FILT test, but the harmonic may be specified by the user as a rulticle of the fundarental, as can the filter setting.

6.2.2 waveform vercry Tests

Test Name: MEM
No. tests: 8
Test No. 1 - "Read-write ${ }^{\text {n }}$
Eurpcse: Iests remory read-write arility.
Iirst the waveform address counters are reset ($G 1-G 3$) then the entire memory is written with zercs. The address count is automatically incremented after each write by having LOAL asserted and PUN not asserted. Mercry is read rack in the same way to verify data.

Test No. 2 - "Read-wite FE"
Purcose: Tests rercry read-write arility.
Writes $\$ f y$ sequentially to entizememory and reads back to verify as in test 1.

Eest No.z- "Read-write and Refresh AA"
Purpose: Tests remory read-write arility.
Writes $\$ A A$ to the entire memory, executes a delay looy for 5 seconds then verifies the cortents of merory as in test 1.

Test No. 4 - "Chanrel-Segrent-3yte Uniqueress Forward"
Purpcse: Checks that each byte ir 16π memory of each charnel card being tested can be addressed vaiquely.

Memory is filled with 4-byte uniqueness patterns. Each pattern consists of the charael rask selecting that chancel, the seament number reing written to, and the double-ryte offset of the first byte in the pattera.

Each channel memory is then read back in the same order to verify the patterns.

Test No. 5 - "Chaneel-Segment-Ryte Uniqueness Peverse" Purfose: Addressing uniqueress.
This test is identical to No. 4 except that channel memories are filled beginning with chañel 8 instead of channel 1 . This in case a fault on channel 1 is causing a fault to appear on another channel.

Test No. 6 - "Segment Random Access using Load"
Purpose: Tests ability to preset waveform segment counters.
Waveform segment counters (ICs G1,G3) are preset from the WS outputs of PIA FG5. This test can only be perforifed after test No. 5 since it reads the uniqueness patterns to check that the correct segrent has been selected.

A bit-swapping routine is used to generate a set of 127 nonsequential segrent numbers. Each segment preset is loaded when the C.M.I. MAINFRAME SERVICE MANUAL - Page 56

ICAD signal (also from PIA) is togaled, and the secord byte of the uniqueress patteriat that preset is read to cherk the sesment rumber.
)

```
Test No.7 - "Sestent Randor, Access using Fun
Purgose: waveform segrent presettatility.
```

Tests waveform segment preset as in test 6 but preset is loaded when ?UN steal toggles.

```
Test No.8 - "Sequeqtial Access
    Purcose: Checks that segrient c 1 of each chanrel aan be writte
                with an incremerting pattern. writes to al
                channels simultaneosly from zero address through
                the erd of memcry then reads back, startinewit
                charnel 1.
```


E.2.3 Envelope Control Tests

Test name: RAMP
No. tests: 4
options: $\quad F=0$
Filter cutoff frequrcy.
Ranee $1-15$, default =15
Test No. 1 - "Part Preset"
Purpose: Tests ability to preset the envelope-shaping inC
The envelope IAC is preset. The waveform DAC is provided with a steady data input of $\$ \mathrm{FF}$ while its reference voltage (the envelope) is cycled linearly between θ and $\$ F F$. The ramp up/down counters are preset on every segment. A low frequrcy triangle waveform should result at $\mathbb{T P}$ with $1.75 V$ FTp amplitude. Terminate test and advance to the next by hitting the space bar.

purpose: The envelope the up/down amp counters.
The ramp counters are allowed to free run until they reach e or $\$ 5 \bar{F}$, whereupon the direction control bit is changed to rapping the opposite direction. The result is a clipped triangle waveform, 1.75 V $p-F$ at $T P 6$. Terminate test by hitting the space bar.

Test No.z - "Force Ramp Up and Down"
Purpose: Checks ramp up/down override.
Ramp counters are allowed to ramp up and down as in test 2 but the direction control is overridden by the Force Ramp op ard For re Ramp Down controls. The same clipped triangle waveform should appear at TPG. Terminate test by hitting, the space bar.

Test No. 4 - "Ramp Zero Offset"
Purpose: Checks for noise or a DC offset from envelope IAC at zero output.

The ramp level is preset to zero. There should be negligible output (less than $309 \mathrm{~m} p-\mathrm{p}$) from the chancel card at TPG.

6.2.4 Volume Control

 Test rame: voi
 No. tests: z
 Purgose: Checks volume control DAC.
 0ptions: T=| Filter cutoff harmonic
 Range 1-15, default }
 S=n Volume charge soeed
 Range 1-127, default 1
 The volume control DAC is the last stage in the audio processing syster. With a IC reference (normally the ervelope shayed and filtered waveform) volure cata is cycled rectitively betweer zero and \$FF. The cycle speed is coatrolled by the S option: corresponds to maximur speed.
A triangle waveform of 2 V p-p sinculd be observed at I? the test by bitting the space bar.
Test No. 2 - "Zero Offset Test"
purpose: this test checks the zero offset of the fixed low-fass filter which precedes the volume Dac.
The latched volure level is set to zero. A trimpot should be available at the front of the charnel card. If a cuzziag sourd cocurs, accorpanied by a srall sawtocth waveform at mpe, adjust the trirfot until no buzzing is heard at max monitor volume. There should be no more than zarm FH of noise when the trimpot is set correctly Terminate the test by pressine the space bar.
If no trimpot is on the boarc, refer to Field Change Notice 32.

```

\subsection*{6.2.5 Timer Tests}

Test name: TIM
No. tests: Z
Test No.1 - "Timer Read/ Writ Latch es
Purpose: Checks ability to commuicicate with timer.
The \(6 \varepsilon 4 \varnothing\) timer contains 3 16-bit timer counters and 3 associated preset latches. First all tires are held in preset state and outputs enabled by writing \(\$ 81\) to the internal control registers. Then timer
 associated timer read back for verification after each write. (Ir the preset state each counter reflects the contents of its preset latch: The other two tires are then tested in the same way.

Each write/read is a double-byte transfer through the e-bit buss.
Test No. 2 - "Tim er Internal Clock Timeout"
Purpose: Checks timeout action using internal clock.
Timers are programed to be decremented from the internal clock and are all initialised to \$FFFF. Timeout occurs when a time decrements to zero. All three timers should timeout together. software timer is used as a reference to detect early or missed timeouts. The fat? status register is repetitively polled to che when timeout occurs.

Test No. Z - "Timer Enteral Clock Timeout"
Purpose: Checks timeout action using external clock.
Clock timeout is verified using the external clock inputs. Using the same reference as test No. 2 , all three timers should timeous simultaneously.
```

E.2.6 Ditch and Cotave Sortrol

```

Test name: EIT
No. tests: 2
Test No. 1 - "Octare ?egister"
Purgose: Checks accuracy of the octave control PIA.
Witt the pitch resister held at max, octave register is cycled frome to e. At each setting, a timer is used to time a waveform bj presetting a segrect court appropriate to that octave ard selectin the RUN mode. If tirecut cocurs before the End of Sourd is reached or if the timer value is greater than a certain tolerance when the end is reached, ar erroris gererated. The tirer is clocked ry the interna clock.

\section*{Test No. 2 - "Pitch Eesister Test"}

Purcose: Checzs accuracy of pitch control Ercr PIA.
With the cretave reaister held corstant, the 10 -bit pitch registel is cycled fror zero to raximum and and the same metrod is used verify the wavefori accessing frequency as in test No.
6.2.? Interrupt Flags

Test name: Fig
No. tests: 4
Test No.1 "End of Sourd Elag"
purfose: Test the "last sesment" flag.
An end-of-sourd interrupt is generated when the waveform address counters reach maxirum. To test this, the segrent court is preset to the last segrent (\$7F), ard 127 writes to waveform memory are executed. Cn each write, jremeture end-of-sound is checked for. The 128th write should then Ercduce the interrupt.

Test No. 2 "Terminal Rare tilag"
purzose: Test clipping" ilaz.
Generated by zero or mex court being reached by ramp counters With direction bit from set to cown, saQ is written to the ram preset register. The status is tinen read to check for ro terminal ram flaz. Then zero is written io the ramp preset ard read ajain to chec that the terminal ramp flag is gresent.

The direction bit is then \(\quad\) leared (rerp up) ard \(\$ 7 \mathrm{~F}\) and \(\frac{1}{3} F\) written to the ramp preset to alternately clear and set the termina rarp flag.
mest No.z - "Zero Crossing Flag
Pureose: Test "middie ô sement" slag.
Generated at the middle of every segrezt by waveform addres counter . The flag goes bigh when the within-segment byte coun reaches 64 . The test asserts to clears the counter then does 63 write to waveform merrory, checzing each tire that the flag is clear. or more write should then set the flag.

Test No. 4 - "Zero Cross Interrupt Flag"."
Purcose: Test "riddie of last segment" flag.
Zerc crossing interrupt occurs on first zero crossing after th segrent timer timeout. The tirer is programmed to be clocked by th internal clock. Until it times out, the zero-crossing interrupt i checked for no premature flaz. After timeout the status is rea again to check that the zero-crossing flag has cccuried. The addres counters are clocked at maximum pitch during the test.
```

E.3 Master Card Tests

```

The master card can be diaznosed using the program MAST. CM, run by typing

MAST〈CR〉
with the CMI diagncstics disc in drive \(\mathbb{Q}\).
The standard comitand interoreter is used so the IIST and \(B\) commands, and \(P\) and \(N\) options are availableas described in the general introducticn. Tests are run ty typing

Some MAST tests require at least one charnel card to be installed in the CMI. These are irdirated by the fresence cf a \(C\) option in the descriptions below.

\subsection*{6.3.1 Timer Tests}

Test rame: TIM
No. tests: 4
Test Nc. 1 "Master Timer Gead/Write Latches"
Purfose: Check ability to communicate with timer.
The \(z\) tirers in the EE40 timer are put into the preset state and all numbers from zero to \(\ddagger\) FFFFwritten to the timer 1 latch. Each write is followed by a tirer read for verification. Tiriers. 2 and 3 are then tested in the same way.

Each write/read is a double byte transfer through the 8-bit buss.

Test No. 2 "Master Timer Internal Clock Timeout"
Purpose: Check timeout operation under internal clock.
The timers are clocked by the internal clock. All three timers ar initialised to \(\$ F F F F\) then started. A software tiring loop is used a reference, and the timer status is continually polled for prematur timeout. Timeout must occur within a certain tolerance before ol after reference timeout. Clock outputs are enarled during the tests.

Test No. \({ }^{\text {"Master Timer Exteraal Clock Timeout }}\) Pureose: Checi tireout operation under exteral clock.
tiress are prograrred as follows:-
Timer 2 Inteznal clocis
Ccotirucus operation
Initialised to 1
cuteut enabled
Tirers 1ss External clock (Timer z output)
siagle scot
Initialised to \$EFFF/2
Cutputs gached
Tae same refererce is used to check that timers 1 and 3 , bein clocked by tirer 2, tires within tolerance.

Test No.a "Master syach In/Cut"
Purpose: Checks click output and syach input circuits.
This is actually two tests run one after the cther. Both requir Synch In to re corsected to Synch cut via an attenuator/filte circuit in order to load the output. The circuit is illustrate below.


Syach Fest Plue Circuit (z-pin Caraor)
The first test clocks the Synch In timer (timer 2) with a kion frequency and checis its timeout against the software reference Iuring initialisation, timer if checked to be workige (i.e. that can be made to tire cut). It is then programired for interral clos and preset to run continuously at 250 Hz with its output enabled Timer 2 receives the sync input pulses and tires out in single sh mode after 100 clociss (about \(4 \pi 8 \mathrm{mS}\) ). This timeout is verified again the software timer. Tirer 3 is not used.

The second test sends a fixed number of pulses from timer 1 timer 2 and checks that timer 2 receives the correct number. Timer is set to interal clock and runs at lone耳z. Tirer 2 is initialised \$TFFF. The status register is polled for timer 1 timeouts and it stoppped after 3000. Then timer \(2^{\prime \prime}\) s counter is read to check that decrerented to the correct number.

\subsection*{6.3.2 Master Pitch Pegister Test}

Test name: PIT
No. tests: 1
Pest No. 1 "Master Pitch Pezister Test"
Purcose: Check for presence and accuracy of the master pitch reference signal MOSC.

This test requires a worixing channel card to be installed in the channel 1 slot. Each of the master pitch rate multipliers are tested secarately by timing a rurber of segmerts ard comparinz it to a fixed value. The chanrel card is set at afixed fitch, then the master fitch is preset through the master pitch register, starting with the lowest pitch. Tirer z on the channel card is used to time the sezrents. The End-of-sound flag is cleared on the channel card then RUN rode selected and the timer started. The chanael status is polled for the arrival of the end-cf-scund and if it arrives outside a set tolerance fror tre timer z tirecut, an error is generated.

This cyole is repeated for all master pitch settings.
a sufficiert number of samples have been rade and stored in channel ( \(\delta\) others if specififd), sarpling is stoped and the data in charrel read to check for a continuous rising ramp followed by a continuou falling cne. Each sarple in the falling rare is complerented first an then chesked as if it were a rising rarp.

Test No. 2 "Analog to Dieital Converter \(38.2 k 甘 z\) "
This test is idertical to test No. 1 except that a \(3 \varepsilon .2 \mathrm{kF}\). sampling rate is used.

\section*{Error reports}

If \(a n\) error is occurs, a message is printed containing the erro identification nurter, a description of the error, and an offse indicating the adress in the channel card merory where the error wa detected. Some different error Irs give the same descriptive messag and require further explanatioc:

Erroz \#Z - "Ifffererce too small"
Too many successive samples were identical. Test \(N=1\) allow orly ore repeated value, while \(N=2\) allows two.

Errcr 46 - "Iiffererce too large"
The difference between two sucessive samples was 2 or more
The comparison of sarples is unsigned so this message may aegatis

directicn for ode or fore samples.
Error f7 - "Difference too large"
Tco racy jumps of two were detected over the whole ramp. Test \(N=\) allows up to 18 jumps of two but \(N=2\) does not allow any.

Test name: ADCEX
No. tests: 2
Purpose: AL conversion test for detuging.
Options: \(C=n \quad\) Chancel number
\(R=n \quad \begin{aligned} & \text { Audtype } \\ & \text { Range } \theta-2, ~ d e f a u l t ~\end{aligned}\)
Test No. 1 "AD Run Continuous 16 kHz "
- Test No. 2 "AD Run Continuous z \(\quad\). \(2 \mathrm{~KB} z\) "

These tests are the same as the \(A D\) tests except that sampli continues indefinitely to assist in detugging problems discovered AI.

Test Name: II
No. tests: 1
Purpose: ar conversion display.
Options: \(C=n \quad\) Changel no.
Range 1-8, default 1
Test No.1 "Ifsplay Routine"

This simply sets up the specified fhannel to play back the sampled waveform last recorded by \(A D\) or \(A D C H K\). Monitor it at tPe or the rixed output. It should te a low frequency triangle. It is not recessary to do this except for debuesing zurposes as the software checks for the correct sampled data itself.

Test Nare: LUMF
No. tests: 1
Purcose: For close examination of sarpled data
Options: C=n Channel no.
Range \(1-8\), default 1
\(s=n \quad\) Segment no.
Range D-127, default ©
The contents of the specified channel and segment are printed on the screen in hexadecimal. Iivide the offset printed by the error report by 128 to calculate whick senment to display.
```

E.z.3.2 AI Tests Using Internal Analog Source

```

These tests are desiened to checis the analog to di弓ital converter where a corplete CMI is being tested without using the Analoz Tester E ax.
?est Nare: ADI
No. tests: 2
Puryose: Tests \(A-D\) conversion syster using a known
analog input, EErerated from cre of the ohanal

? Crare
as specified).
\(\mathrm{F}=\mathrm{r} \quad\) Audio roard type
Rarés z-2, default \(Q\)
Test No. 1 . "Analog to Eigital Convertor 16 xHz "
Test Nc. 2 "Analog to Digital Convertcr za. 2 k gz"
Cnannel 1 must be available to provide the \(A D\) conversion clock to the raster card. The cther chanrels specified (or channel 1 by default) are loaded with a two-segment triansle wave to simulate the test waveform provided \(\quad\) y the Analog Tester in the \(A D\) test. If testina a complete CMI, connect the cutput of the channel to be used as the analcg scurce to the EXM ADC input as below and set the AIC selector to EXT ADC (this bjpasses the master bandpass filter).

\begin{abstract}
Pin Pin
Pin
\end{abstract}
\begin{tabular}{lllll} 
GNI & 1 & 1 & Ext ADC \(\operatorname{RTN}\) \\
Side A & 2 & 2 & & \\
Side B & 3 & 3 & Ext ADC IN
\end{tabular}

Channel_output_Socket

\section*{EXT_ADC_SOCSEt}

The \(R\) option is to allow for the high gain of early version audio boards (prior to revision 4A.1). If it is desired to update an old board, refer to Field Change Notice 23. The option determines the channel volume seting for playing the test waveform, as follows:
\(R=0 \quad\) Test is first performed with volume setting for
the old version audio board. The first conversion is read and, if wrong, the volume is set lower gain new version audio board. The repeated.
\(\mathrm{R}=1\) Test \(1 s^{\text {e performed with volume set for an old audio }}\) board only.
\(R=2\) Test is performed with volure set for the new version audio board only.
C.M.I. MAINFPAME SERVICE MANOAL - Page 70

Scanned by JB EMOND - www.fairlight.free.fr

Instead of storing the converted data in a channel cerd, it is written to a syster RAM. buffer. when 256 tytes have been read the values are checked as follows:
(1) All values must be increasing, tut up to 2 successive values ray be the same.
(2) There can be at rost 1 missing code.

Test Name: IBI
No. Tests: 1
purpose: Close examination of sampled data.
Test No. 1 "Eisplay Contents of Buffer"
Half of the corterts of the 256 -byte buffer in EAM, representing one side of tre sampled wavefort are printed on the screen.

Test Name: III
No. Tests: 1
Purpose: Eeplay sarpled waveform
CPtions: C=n Chanelno.
Parge 1-8, default 1
TEst No.1 "Display Rcutine"
The contents of the EAM tuffer are roved to the specisied channel card menory and the channel set runninguntil CNTRI ESC is typed Monitor the waveform at TPG. It should be a low frequency triangle.

This test allows a quicker check of sameled data than I display routines are orly necessary for debugging as the AII test itself checks if sargled data is correct.

Test Name: JAM
No. tests: 2
Test No.1 "ø2 Jam and Unjam"
Purecse: Checks correct functionire of the processor 1 bait circuit used by AE conversions.

Test No. "p2 jar Tireout"
Purpose: Tests the automatic processor 2 restart.
In the event of UNJM rever teing accessed or a corversion never beigg coryleted, a hariware timeout is provided by a caeshot to restart P2. It must be possible to stop processor 2 for at least 2agus but ro more thar irs.is used as test No. 1

\subsection*{5.2. 4 Master Bandpass Filter Tests}

Test Narre: FIIT
No. tests: 17
Purpose: Check characteristics of \(A-D\) converter input filter.
obtions: C=n Channel number
Range \(1-8\), default 8
The specified channel is set up to provide an analog tes warefori. A sfecial cable with a plug ratching the row of chancel card test pirs is used to take siznal from channel crad TPo, the unfiltered analog cutput, to the IINE IN Infut of the audio board ard thenfe to the master card Filter Input. Having rade the concerticns as below, select IINE IN and INT ADC. Monitor the waveform at pin z of the SAMPIING FILTER OUT sociset (pins 1 and 2 are GND) or TPID of the raster card.


Channol_Card_Test_qoints
IINE IN_SOCKEt
This test can also be performed using the Analog mester box bu the tester cannot gain access to the unfiltered chancel outputarc uses the filtered output instead. This can indicate whether there is major fault in the master filter but there is no point making accurate level measurements since the frequercy restonses of the channel cerd raster card, MIC or IINE input amplifiers and the tester itself ar all superimposed. Set the tester to EIIT OUT ONLY.

The filter settings have the following effect:
\begin{tabular}{|c|c|c|}
\hline \(8-\mathrm{X}\) & Lep at mialmum & - \\
\hline 0 & LPF at maximur & cutoff frequency \\
\hline \$ EX & EPF at raximum & cutoff \\
\hline \$8X-FI & HPF at minimum & cutoff fr \\
\hline
\end{tabular}

Tests 1 to 9 fix the \(B P F\) at minimum cutopl wile ranging the \(L P F\) fro maximum to minimum respectively ( \(0-8\) ). Tests \(10-17\) fix the LPF a maximum cutoff while ranging the \(B P F\) from minimum to marimum ( \(7-6\) ) Step through the tests using the space bar.

All tests 11114 segments of the specified channel vith fundamental sine wave, followed by another 4 segments of the 3 r harronic. Chandel pitch is set for each filter setting to obtain predetermined attenuation ratio betveen the two erequencies. Timer of the channel is set to loop around the 8 segments continuously an they are played through the analog bandfass filter at maximum vol an ramp settiggs.

Refer to Section 6.11 for expected waveforms.

\section*{}

\section*{Eigh－pass Filter 3dB Point}

The 3 Bb point of the Master Filter at the lowest setting of the high－pass filter shculd occur at less than 20日z．This can be tested by typing

FI二T，\(N=G\langle C R\rangle\)
This sets the filter at \(\$ F 8\) ，which is the lowest setting of both high pass and low pass filters．Instead of using the channel card as analogue input as above，connect a signal generator to the \(\operatorname{LINE}\) IN sorket（if single－ended，use side \(B\) ，pin 3）．Set input selector to LINE IN．

Monitor the master filter output at \(T P 10\) of the master card． With a lire input of about 2.6 V p－f at 580 Hz ，the filter output should peak at \(10 V\) p－Adjust frequency downwards until the filter output is \(3 d B\) down，i．e． 57 p－p．This frequency should be less than 20日z．
```

See Section 11 for filter ciaracteristics for all settings.

```

\subsection*{6.3.5 Video Ram Control}

Test nare: fam
No. tests: 2
Purpose: Check ability to map VRAM in and out of processor address space.
Test No. 1 " BAM VaAM Uniqueness Alternate Write"
The \(1 \in k\) of video RAM can be used as system PAM by processor 2 by clearing the CB2 bit of the PIA on the Master Card. This control is checked by first saving the contents of the screen (Vafy) in spare syster DAM. Ther the pattern \$AA is writter to \$80eZ (RAM), CB2 cleared to acress V?AM, and the complement pattern (\$55) written to VRAM \(\$ \varepsilon \int 00\). This sequence is repeated for the entire lok (with CB2 toggling after each write). Then the two blocks are alterately read from the beeinoing in the same way, to check for correct detain each block. Finally vala is restored to the original.

Test No. 2 "ram vair Uniqueress Alternate Read"
This is identical to test No.1 excert that the pattern \(\$ 55\) is written to syster RAM, and \$AA to VRAM.
```

6.4.0 64R RAM Card Tests

```

\subsection*{6.4.1 MEMTST}

A program for testing the \(64 K\) RAM card \(00 \subseteq 6\) is MEMTST.CM which can be run by typing

NEMIST〈CR〉
with the CMI diagnostics disc in drive \(\&\).
The standard command interpreter is used so the IIST and \(?\) commands, and \(P\) and \(N\) options are available as dEscribed in tie general introduction. Tests are run by typing

The program usually resides in block \(\theta\) (lowest \(1 \in \mathbb{C l}\) (ok) so tests which involve overwriting this area move it somewhere else first ard bring it back afterwards.

Error messages will generally indicate the block where the error concurred. Block \(a\) is physically located on the G-REG board in the eight RAM chips of row F furthest away from the edge connector. Blocks \(1-3\) are rows \(E, D\), and \(C\) respectively.

Test name: 2 C
No. tests: \(\subseteq\)
Test No. 1 "Maprar"
Purpose: This tests the ability to select blocks one at a time without contention or overwriting.

With the test program running in block e, logical block 1 is mapped to physical block (by writing the necessary data to marat Ez) and filled with \(1^{\prime}\) s. Then logical block 1 is rapped to physical block 2 and filled with \({ }^{\prime}\) 's. Similarly, physical block z is filled with 3 's through logical block 1 . That done, each physical block is selected in turn and read back for verification as logical block 1. (including the program) are moved to physical block \(z\) and the test is repeated on blocks g-2.
```

IEst No. 2 "P1 Odd Un, 22 Iven Up"..
Test No. "E1 Odd ECwn, P2 Even UF
Test No. "P1 Cdd Down, P2 EvEn Lown"
Test No. 5 "F1 Odd Up, P2 IVEn Lown
Test No. 6 P1 Odd, F2 Even
Test No. 7 "E1 Even. P2 Odd"
Test No. ε "E1 All".
Test No. S "P2 All"
$\begin{array}{ll}\text { Purcose: Test the ability of both processcrs to write and read } \\ & \text { Every loratior in gam independently without interfering }\end{array}$
with each other.

```

Fach processcr starts with a giver data patterr "seed" and adds 29 (deaimal), modulo 255, each time it writes. This creates a discontinuous but exhaustive data sequence which car be reproduced for verification.
"p1 cdd" means inat processor 1 writes and reads all odd locatiors only, while "p2 Even" means processor 2 writes/reads all even locations only, and so on. Thus the datafrom each processor is interleaved in momory.
"P1 Uo" reans that grocessor 1 starts writing to the bottcr of remory (lowest address) and Eoes up. Once it reaches the top, a reading phase is ertered to verify the data rattern from the top of memory back to the bottom. Conversely "p2 down means processor 2 starts writing at the top and works down, then reads back from botom to top.
"All" means the stecified processor writes and reads both even and cdd locations.

Tests \(6-9\) cause one or both processors as specified to start at both ends, writing to the top and bottom alternately and working in towards the riddle. winen the midde is reached the reading phase begins, reading frcm the riddle, out towards the top and bottom.

Test name: \(A\)
No. tests: \(\bar{z}\)
Purpose: More Ram mapping tests
Test No. 1 "Walxing Address P2"
Test No. 2 "walking Address P1"
These test the Ram mapping by writing a "walking address" to the location specified by that address, testing one block at a time. First the block is filled with pseudo-random data. Then, starting at the bottom of the block the high order 8 bits of the current address is written to an even location then read back for verification. The low order address byte is written in the next location and verified. This is continued to the end of the block (incrementing the address by two for each high-order/low order writel. Then the whole block is read again for verification from the beginning.

Test name: Map
No. tests: 4

Test No.1 "Map Uniqueness"
Ourpose: This tests the ability to select blocks one at a time withcut cortention or overwriting.

This test is effectively identical to " \(29^{\prime \prime}\) No. 1

Test No. 2 "Card Leselect"
purpose: By mapping anj logical block to a physical block greater thar 3 it must be cossible to deselect the entire ram card.

The program runs in block \(\theta\) as usual. Blocks \(1-3\) are filled with data \(\$ E 5\). Then lceinal block 1 is rapped to physical blonks to 7 in turn, reading the whole block for \(\$^{5} \Xi^{\prime}{ }^{\prime}\) s which should never come up. This establishes that deselected blocks canrot be read.

To check they cant be writter to, \$AA is written to logical block 1 then 已hysical blocks 3,2 and 1 are checked to still contain \(\$ 55\).

Test No.z "urite Frotect"
Purgose: Elocks car be selected for reading only
Pysical blocks 1-3 are filled with \(\$ 55\) and verified. Then each of these tlocks are mafped in turn to processcr 2 block 1 with the writeerable rit removed. The write-erarle rit is the least siznificant bit of th \(\equiv\) mappirg byte written to the mapram. For each mapping, logical block 1 is cleared. Then all three fhysical blocks are checked to still contain \(\$ 5\).

Test No. 4 "Map-Processor Uniqueness"
Purpose: Processcrs can be rapped independently.
Fhysical block 1 is mapped to processor 2 block 1 , and physical block 2 is mapped to process or 1 block 1 . Processor 1 fills its logical block 1 . With \(1^{\prime} s\), ard simultareously, processor 2 fills its block 1 with 2 's. Each processor then reads back its own block to verify for correct data.

\section*{E.4.2 MEMCH}

A handy program for testing faulty 64 K RAM cards is MEMCH.CM. However a good board is required to load it in the first place. With a good Q-qC8 in the appropriate slot, type

\section*{MIMCE<CR>}

With the CMI diagnostices disc in drive 0 . The program loads to \(\$ F F \theta Q\), which is processor-unique static RAM on the processor control card. Halt both processcrs, swap the faulty RAM card in, and release the processors.

The program writes a binary count, verifying after each write, to location \(\$ 100\) of each block.
\[
\text { C.M.I. MAINFRAME SERVICE MANUAI - Page } 78
\]

\section*{6．5．0 Central Processor Control Module}

Few diagnostics are available for testing this card（0－032）since it is rot possible to load the DCS and run a test without most of the

5．1 User PIA and Real Time Clock
The user piA and real time clock is tested by the program DEBTST．CM，which may be run by typing

\section*{EEPTST＜CF〉}
with the CMI diagnostics disc in drive 0.
The standard command interpreter is used so the IIST and R commands，and \(P\) and \(N\) options are available as describedin the general introduction．Tests are run by typing
＜test nare＞［，〈optioni〉，＜option2〉．．．，〈optionN〉］〈CR〉
The PIA tests require a special test plug to be inserted in the user DIA socket（the one nearest the top of the board）which has the effect of connscting the \(A\) side of the FIA to the \(B\) side．Conneoticns are as follows：
```

1-24, 2-25, 3-26,
5-22, 6-21, 7-22,
$8-19,9-18,10-17$,
11-16, 12 - 15 .

```

Test Name：PIA
No．tests： 8
Test No． 1 ＂PIA B／Send \(A / R e c \in i v e "\).
Test No． 2 ＂PIA A／Send B／Receive＂
Purcose：with the test plug connecting the two sides of the PIA，A should be able to write to \(B\) and \(\nabla i c e-v e r s a\).

Botb tests checy each side of the PIA individually first by defining the side as all bits inputs，changing them to outputs，ther writing \(Q, \$ F F, \$ F E\) etc．down to 8 again to the data register and reading tack to verify each write．

Test no．1 then sets side A as all infuts and side \(B\) as all outputs and writes all values from \(\theta\) decrementing back to \(\varnothing\) to side \(B\) ，AND reading from side \(A\) ．Test no．2 does the same in the opposite directicn．

Test No. 3
Test No. 4
Test No. 5
Test No. 6
purcose: CAZ/Send CB2/Receive +re
purcose: Irterrupt ircuts/control outputs check.
The signal specified by "Send CX2" is confizured as a control output whose state is determined \(\quad\) y \(C R B-z\) in the PIA control register. The other signal is configured as an interrurt input which will set the interrupt flag in the control register on an edge whose direction is incicated by the "acceive +ve or - ve".

The transmit end is first set to the state which will allow the wrorg transition to cause ar interrupt. (i.e. if the interrupt receiver is +re edge triegered, the transmit end is set high) and the flag is checked as clear. Then the transmit state is toggled and checyed apain as still clear. A second toggle should trigger the interruft flag.

The actual \(I R Q\) output is disabled during the test.
Test No.7 "CA1: RTC Ineut \(16.3 m \mathrm{~S}\) ".
Test No. 8 "CBI: REC Input 1 E. 3 mS "
Purpose: Real time cloci and CA1/CR1 operation
Interrupt input cal is always connected to a real time clock signal; inserting the test plug connects cai to it also.

During the test processor in is held in a tight loop to prevent it ascidertally clearine the interrupt flag while processor 2 runs the test.

A long timeout 1000 is used first to check if the clock is working at all. The interrupt flag in the control reegister associated with CA1 or CB1 as stecified is cleared then a polling loop entered to check if a new interrupt is received.

Immediately after the first "clock tick" is received, another counting/polling loop is entered to time when the next tick comes. When the second tick arrives the counter is checked to determine if clock is fast or slow. "Very slow" error message indicates that the most significant byte of the 16 -bit counter was wrong.

\section*{E．6．D Light Pen Interface}

\section*{6．1 CMILP}

A quick check of the functions of the Light Pen Interface card 148 is provided by the program CMILP．CM which may be run by typing

\section*{CMIIP〈CR〉}

With the CMI diagnostics disc in drive \＆．This test does not use the standard command interfreter．

The commands to CMILP are very simple：
I－Invert entire screen
C－Clear entire screen
6 －Guit
Just type the letter to initiate a command．
With the screen all＂wite＂it should be possible to sef the cursor field when the tip of the light pen is not touched，and draw single－dot＂black＂lines on the screen when it is touched．With the monitor adjusted to noral brightaess the lieht pen sersitivity（a small screw under the rubber cap on the light pen body）should be adjusted so that the cursor is as small as possible but still distinct．

Check that it is possible to draw anywhere on the screen except the tor two rows and the left most 8 columns．Try inverting the screen．

\section*{6．6．2 LFTST}

For more careful diagnosis of a falty board，use LPTST．CM run by typing

\section*{LPTST＜CR}
with the CMI diagnostics disc in drive \(\ell\).
The standard command interpreter is used so the LIST and \(R\) commands，and \(P\) and \(N\) options are available as descriced in the general introduction．Tests are run by typing

〈test name〉［，〈option1〉，＜option2〉．．．，＜oftionN〉］＜CR＞
This section describes LPTST Version 1.3

\subsection*{6.6.2.1 Iight Pen Timers}

Test name: TIM
No. tests: 4
Test No. 1 "Iight Pen Timer Read/wite Latches"
Purpose: 684 timer preset latches can be written to and the counters read.

Timers are put into preset state in which the counters always reflect the contents of the preset latches. Then each timer is write/read tested with all numbers from \(\varnothing\) to \$FFry. Each write/read is a 16-bit transfer through the 8-tit buss.

Test No. 2 " Light Pen Timer Internal Clock Pirecut"
Purcose: Correct timecut from timers under internal clock
The internal clocz is provided by the BCA signal. Timer outputs are enabled and latches preset to \$FFF. Then all three counters are released and their timeouts comeared to a software status-pollirz (to sense timeout) timing reference looy.

Test No. z "Light Pen Timer 2 External Clock".
Test No. 4 Light Fen Timer 3 Exterial Clork"
Purfose: Timers under external clock
Timer 2 courtsframes, thus gets a 2 ems clonk cycle. The test is not synchronised to the frame fulses so a \(+/-10 \mathrm{~m}\) jitter is permissible. The tirer is preset to count 200 clocks ( 4 secs), then released ard compared to the software reference with the required tolerarce.

Tirer 3 is clocked by processor 2 phase \(2(1 \mathrm{M} z\) ). It is preset to \(\$ F F F F\) then released and its timeout compared to the software reference.

Both timers run in single shot mode with outputs enabled.

\subsection*{6.6.2.2 Light Pen PIA}

Test name: fia
No. tests: 1
Test No. 1 "PIA Test"
Purfose: Iou've got 3 guesses
Each side of the PIA is configured as all outputs then all numbers from zero backwards down to zero are written to the data latches and verified.

\section*{C.M.I. MAINFRAME SERVICE MANDAL - Page 82}
G.E.2.3 Drocesscr Access Selection
"Test" name: SEI
Durpose: Allows user to specify which processor can access tho videc RAM.
Cptions \(\quad C=n \quad C P U\) selection
Pange \(1-2\), default 2
Used for special purpose testing only. Not applicable to C.M.I. which always uses processor 2 for VRAM operations.
```

6.6.2.4 Light PEn Drawireg
mest name: LDEN
No. tests: ?
Test No.1 "Iight Pen Irawing on Screen"
Durcose: Cverall lizht Een operatior, similar to CMIIP.
Opticns: L=1 Banee b-1, default 1
screen
S=s Zanee Ø-1, default 1
O inhibits resetting of the scroll reg.

```

Use LFEN the same way as CMILP. inth hit address writingerabled, the location of each hit is written on the bottom line of the screen, both as \(X, Y\) cocrdianates and as an address in video ram. The line rumber is eiven sirst (zero at the top) followed by two kytes representing the location of the hit on that line. The first byte should always be ocr and represents the least significant bit of the \(\subseteq-b i t\) location ( 512 dots per line). The second byte is the upper 8 bits of the location. The VRAM ADRS is the absolute adiress of the hit in video RAM ard is followed by a byte indicating which bit of that address was hit.

\section*{6.7.e Graphics System}

A functional check of the Graphics Controller Q-845 and \(16 K\) Graphics RAM \(6-8,25\) can te run by typing

\section*{GRAPH3<CR>}
with the CMI diagnostics disc in drive \(Q\). This test doesn't use the standard command interpreter.

GFAPH3 does not test the \(Q-025\) directly as MEMTST tests the Q- 096 memory. Eowever, sraphics RAM faults will generally be apparent from the screen display. A software test of the Q-825, though not exhaustive is the ram Vamm Uniqueness tests in MAST (see sectior 6.3.5).

Graphz Commands:-
A single hex digit \(\varnothing-B\) calls one of 11 simple graphics drawing functions. Each command begins in the centre of the screen and draws out in the stecified direction to the edge and wraps back around to the certre. Irawing ray be started and stopped, speeded up and slowed down as below:
\begin{tabular}{|c|c|}
\hline Type & Effect \\
\hline 1 & Horizontal line to the right \\
\hline 2 & Horizontal line to the left \\
\hline 3 & Sirgle horizontal byte at the centre \\
\hline 4 & ```
Fertical line downwards
    (single dot, pattern $80)
``` \\
\hline E & 45 degree diagonal down to the right \\
\hline \(\epsilon\) & 45 degree diagonal down to the left \\
\hline \({ }_{7}\) & Heavy vertical column downwards (1 byte wide, pattern \$FF) \\
\hline \(\varepsilon\) & Vertical line upwards, single dot wide \\
\hline G & 45 degree diagonal up to right \\
\hline A & 45 degree diagonal up to left \\
\hline B & Heavy vertical column upwards (\$FF) \\
\hline S & Slower speed \\
\hline I & Increase speed \\
\hline P & Change write pattern \\
\hline E & Ealt \\
\hline C & Clear screen \\
\hline G & Go \\
\hline
\end{tabular}

All drawing is done a byte at a time and except for command 3 which only writes a single byte, consists of witing repetitively to the appropriate \(Q-845\). auto increment/decrement register. The \(0-845\) specification sheet contains a list of which. locations perform these automatic functions. By default, the drawing pattern is \(\$ \mathrm{FF}\) so that all lines are unbroken. By using the \(p\) command the drawing pattern can be used to create broken lines. This is handy for finding single-bit
C.M.I. MAINFRAME SERVICE MANUAL - Page 84
errors (usually originating on the RAM card). The vertical line commands 4 and 8 mask off all but the most significant bit so any pattern without this bit wont draw anything for those commands.

GRAFBZ should be used to check the location of video information between the horizontal synch pulses. This can be controlled ty the two trimpots at the front of the \(Q-Q 45\) board. RV 2 (upper trimpot) sets the horizontal width, and RV1 (lower) sets the horizontal position. Adjust these using the double diamond pattern formed \(b y\) commands 5 and 6 or G and A. The pattern should be symmetrical and just touch the edges of the active video area of the screen.
```

E.8.? Flopey Eisc Controller

```

\begin{abstract}
As is the case for the processor control card, nothing much can run if the floppy disc controller doesn't work. However there are two little progrars described here which, cnce loaded using a good floppy controller, can be of sore use in debugifirg the faulty ofc-z board.
\end{abstract}

\subsection*{6.8.1 FLCFIX}

The program EICFIX.CM is loaded by typing
```

FICIIX<CR>

```
with the diagnostics disc in drive and a woring qrat installed. This loads the jrogram to \(\leqslant\) SFFF and exits immediaiely back to the operating system. Halt both processors, and swap in the faulty board but IO NOT connect the 52 -way ribbor cable to the disc drives. Release the processors and press the console interrupt to enter the monitor. Type

\section*{ARERG}
to run the program (no \(\langle C R\rangle\) required, and no message is printed to indicate the program is ruming).
All it does is loop around, alternately writing and reading the \(\operatorname{IMA}\) status registers at \$FCED to \(\$\) FCE?. No verification is performed.
6.8.2 FICLMA

The program FDCIMA.CM is loaded by typing

\section*{IICIMA〈CR>}
with the diagrostics disc in drive g and a working floppy controller installed. It loads to around \(\$ A 1 g e\) rut immediately exits back to QDOS without running.

Its function is tcexerise the IMA logic. To get a \(\operatorname{LRQ}\) signal on the faulty board, remove the floppy controller chip and insert a link betweer pins 38 and 2 of the socket (for in-house use, there is a dummy chip for this purpose). Ha alt the processors and swap the faulty board in but DO NOT connect the 50-way ribbon to the disc drives. Press console interrupt to enter the monitor and type

\section*{A102;G}
to jump to the program (no <CR> is required, and no message is generated to indicate the program is runging). The program is simply a little loop which writes \(\$ 04\) to the LMA register at \(\$ F C E 6\) indicating a DMA read command, then writes \(\$ 05\) (any number would do) to \(\$ F C B 0\) to generate a \(W\) E signal and hence a LRQ. Note that this does not test the ERQ under a write command.

\author{
C.M.I. MAINFRAME SERVICE MANUAL - Fage 86
}
6.8.3 QFC-2 Alignment

Adustment of two separate pulse lengths is required in the data separator section of the floppy disc controller. The test signals are available at joints \(T P 1\) ard TP2 and adjusted by 10 -turn pots VP1 and VR2 respectively, con the GFC-2 board. with a CRO set to. EuS/div and positive triggered, both signals should be high for \(2.7 u s\) when no data is being read from the disc (TP1 gets reset earlier by data pulses when the disc is being read).
```

G.G.z Interrupt Tests - CNIINT

```

CMIINT．CM is a program for testing all the interrupt mechanisms in a complete CMI．It is run by typing

CMIINT〈CP〉
with the CMI diagnostics disc in drive \(\varepsilon\) ．It does not use the standard corrard interpreter but has its own commands to set up and run interrupt tests．

Each interrupt has a predetermined priority such that if two or more interrupts arrived since the last interrupt service，the one with the highest priority gets serviced first．

The＂level＂of an interrupt is a number indicating its priority such that the highest priority interrupts have a level of zero，and the others are arranged in ascending order of level for decreasing priority．The interrupts which may be tested by cminNT，the part of the sister from which they originate，their levels and the processor which services each one，are as follows：

hame iA
H．．
2
3
4
5
6
7
\(?\)
\[
\begin{aligned}
& 12 \\
& 8 \\
& 13 \\
& 13 \\
& 9 \\
& 14 \\
& 15 \\
& 11
\end{aligned}
\]

3 五

lc \(A\)
TIC HL 1

\section*{CMINT Commards}

RUN Run tests on all active interrupts. Both sequential test (one interrupt at a time) ard simultaneous test (triggered simultaneously, arrival checked for correct priority) will be run unless the \(S E Q\) or SIM commands have been used (see below). Run will be aborted if error count is exceeded or if the user hits CNTRI ESC (break).

REPEAT \(n\) Sets the repeat count to \(n\). The original value is printed. A repeat count of zero will continue indefinitely until aborted.

EFRCR \(\quad\) Stes raximum error count for RUN. Default is 1.
CMDS Prirt a list of available commands.
LIST List all interrupts and their statuses.
HELE Print a summary of how to use the test
GU Return to QDOS
+ <interrupt or function>
Activate an interrupt or function
- <interrupt or function> Ieactivate an interrupt or function

The interrupts which may be activated or deacțivated.,using the + or - commands are as in the abopelist: just type + or - followed by the interrupt name. The "+" is always optional, and the nare by itself will activate that interrupt or furcticr. The functions which may be controlled in this way are:
\begin{tabular}{|c|c|}
\hline P1 & Testing of all processor 1 interrupts \\
\hline P2 & Testing of all processor 2 interrupts \\
\hline ALL & (Le)Activate all interructs \\
\hline IEVEL \(n\) & (IE)Activate all interrupts of level \\
\hline SEQ & Sequential testing \\
\hline S IM & Simultaneous testing \\
\hline EMSG & Generation of error messages \\
\hline DISPLAY & Listing of recorded interrupts on scre \\
\hline
\end{tabular}

\section*{GEnEral Frocedureof Tests}

Initially, all interrupts are "active", i.e., will be tested upon typine the \(R U N\) commana. Tests can be activated or deactivated using the comands above. Each test begins with the processor interrupt mask set so that interrupts currently pending are ignored. The status registers associated with each active interrupt is read in order to clear pending interrupts. These status registers generally contain a flag which indicates an interrupt has been generated and at this point the flak should be clear. All artive interrupts are tested first sequentially (one at a time) then simultaneously. In the latter case, all active tests are "triggered" then the processor interrupt mask cleared.

A delay loop sufficiently long for all triggered interrupts to arrive is entered. The EICU's should continue to interrupt the processors with the currently highest interrupt pending until all have been serviced. A separate service routine is executed for each interrupt which records in a little block of data set aside for each one, its position in the sequence of interrupts when it actually arrived, whether that interrupt has been serviced before, and whether the interrupt flag in the asscriated status register is set. Then the flag is cleared.

At the completicr of the delay loop the data blocks of each inter rupt is checied to ensure the active ones arrived in the correct order and that no unexpected interrupts occurred.

\section*{Frror Messazes}

If error reporting has not been suppressed by a "-EMSG" command, ressages will be generated indicating the error type and the irterrupt test which gererated it. The types of errors detected are as follows:
(1) "High Priority interrupt Cccurred Too Late"

Generated when the interrupt just received has a priority level less than the maximum found so far.
(2) "Interrupt Late ? Due to Previous Error"

One or more interrupts may appear to be late when they actually occurred at the right tire, but a previous highlevel (low friority) interrupt was too early and set an erroneously high current maximum level. The early low priority interrupt will not have been detected. This message is generated when the interrupt just received is consistent with the immediately preceeding interrupt (i.e. has a greater level) but has a lower level than the current maximum. Refer to the diagram on the following page for a clearer explanation of this problem.
(3) "Missing Interrupt"

An interrupt wich was expected never arrived
(4) "Multiple Interrupt"

An interrupt appeared to occur more than once. Usually caused by the interrupt not being cleared successfully by the service routine.
(5) "Unexpected Interrupt" An inactive interrupt occurred.
(6) "Flae Not Set" The service routine found that its associated interrupt flag had not been raised.

\section*{E．1Q． \(\mathfrak{x}\) Testing a Complete CMI－Chain Tests}

The CRAIN cormand is a facility which allows many tests such as those described above to be run with the minimum amount of human intervention．To run a series of tests，the corrard

CHAIN〈filename〉〈；options〉
is used，where 〈filenare〉 is the name of a special chainfile containirg a list of tests to be performed，ard＜options＞are various option described below which control the execution of the chain．

This section is a description of the standard chain files used for testing a complete CMI．
```

E.1*.1 Iigital System Tests

```

Chain test name：CMITEST or CMITEST1
Purfose ：All functions of a CMI which can be tested directly under software control（1．e．ro waveform observaticrs required）

CNITEST1 is for systers with only 1 disc drive and omits tests requiring 2 drives．
CMITES reouires a scratch or another diagnostios disc in drive 1 ．
Test progs run Commands executed
CMIINT－DISK，RUN
ITBIST
All commands
CMITST MEM，PIT，FLG，TIM
MEMTST All commands
IPTST PIA，TIM
MAST
PIT，RAM，JAM，TIM，AD
Also－\(\underset{C A C B U P}{\text { CHECK；（CMITEST only）}}\)

CMITEST1）
```

Options：
$C=n \quad$ Channels to be tested．Lefault is $1-8$
－T Omit timer（TIM）test in MAST
－MAST Omit MAST altogther
$A D \quad$ Include $A-D$ conversion tests in MAST

```

Test runs continuously，but can be aborted by hitting＜cntrlesc＞．

Exarples：
＝CHAIN TEST（Run all tests as described above）
```

=CHAIN TEST;C=4, -MAST (Pun all tests except Master Card and cnly use
Charnel 4)

```
```

8.10.2 Channel Card Analogue Tests
Chain test name: FRV
Purpose: Analogue functions of channel cards.
Test prozs run Comrands Executed
CMITST Only
FILT, FAMF, VOL
Cptions: none
All cbannels are tested. Step through the tests with a press of the space kar. FILT, FAMP ard VCL are called on each channel individually, then $F I I T \quad N=1$ is called repetitively starting with channel 1 ard adaing another channel each time the space bar is pressed. This tests the rizer on the audio card in the back of the ćmi. The arplitude shculd increase each time ancther charnel is mixed in.
Exarple:
=CHAIN FRV (No cptions allowed)

```
6.10. \({ }^{\text {C }}\) Comprehensive Analogue Test

Chain test nare: ANALOG
To check: all analog functions of the CMI channel cards, master card, and audio card.
\begin{tabular}{cl}
Test progs run & Commands executed \\
CMITST & RAMP, FILT, VCI \\
MAST & FILT, SYNC, AD.
\end{tabular}

Options:
M Cmit channel card tests
This test is most conveniently used with the analcg Tester box connected to the rear panel of the CMI as labelled. Some cables need tc be arranged slightly differently from norral. To make the changes, eject the disc(s), and turn power off first.
(1) Keyboard Power cable, normally connected from the CMI to the Music Keyboard, should go to the analog tester.
(2) Alphanumeric keyboard, normally connected to the Music keyboard, should te connected directly to the CMI rear panel.

The test progran gives operator prompts and is thus largely selfexplanatory. The following is some background on the use and functions of the analog tester.

Connection to oscilloscope
The analog tester brings out both sides of the balanced outruts from the channel cards. With the oscilloscope set on \(1 \mathrm{~V} / \mathrm{di} \mathrm{V}\), add CH1 and CH2 and trigger on CH1.

The chain tests call standard tests described in previous sections which specify waveform measurements at TP6 of the channel card. This is only one side of the balanced output so measurements made using the aralog tester will be about twice the amplitude found on TPG. For example in CMITST test FILT, the low frequency amplitude should be \(6.8 \mathrm{p}-\mathrm{p}\).

Switch 1 Phase Position
The phase check is to ensure that the different channels are in phase with each other.

\section*{Switch 1 Normal Position}

This provides the balanced outputs to the CRC as above.

\section*{Mixed Out Test}

This is the same as used in the FRV chain tests where FILT, \(N=1\) is called repetitively starting with channel 1 only and mixing another channel in with each press of the space bar. The
C.M.I. MaINfRAME SERVICR Mandal - Page 95
amplitude should increase with each new channel, reaching a maximum of E.8V pr. This tests the audio mixer board in the back of the CMI.

MIC/LINE switching in MASTer test
By means of software and the analog tester, the output of channel 8 is fed to the MIC and IINE inputs ard one or the other is fed to the Master card via the MIC/LINE switch. Although these two levels are actually quite different, the signals from the analog tester are similar in magnitude but still distinguishable. A sinusoidal waveform followed by a heavily attenuated harmonic should be observed with a peak amplitude of 1.5 V php for MIC and \(1.3 \mathrm{~V} p-\mathrm{p}\) for LINE.

The SYNC test
No measurement is required: the software will inform you of a fault although there is a filtered square wave which can be observed ard an audible tone whose volume ran be controlled by the SYNC MCNITOR pot.

AL Test
This is also a software test only
```

E.11.Q Summary of Test waveforms

```
(M measurement tolerances: refer to the introduction
(TP6) means measured at Test Point 6 of the Channel Card under test.
(AT) means measured using the Analog Tester, adding CRO charnels.

\subsection*{6.11 .1 CMITS․}

\[
\begin{aligned}
V f= & 2.4 V p-p(T P G) \text { for } a 11 \text { tESts } \\
& 6.8 V p-p(A T)
\end{aligned}
\]
\[
\begin{array}{llccccc}
\text { Test N } & & 1 & 2 & 3 & 4-5 & 7-15 \\
\text { Nh, V POp } & (T P G) & 2.2 & 1.6 & 1.3 & 1.1 & 1.2 \\
\text { Uh, V ph } & (A T) & 4 & 3.5 & 3.3 & 3.2 & 3.2
\end{array}
\]

FITS

Levels depend on harmonic and filter settings. Levels for FILTE with default settings are as follows:
\(\begin{array}{lccc}\text { Test } N & & 1 & 2 \\ \nabla f, \nabla p-p(T P 6) & 3.6 & 4.0 & 4.5 \\ V h, V p-p(T P 6) & 4.5 & <a .2 & <R .1\end{array}\)
\[
("<"=\text { less than })
\]
\[
\text { Ramp, } N=1 \text { "Ramp preset" }
\]

\[
\begin{aligned}
& V= \angle V P-P(T P G) \\
&\lfloor V p-P(A T)
\end{aligned}
\]
\[
\text { FAMF, } \begin{array}{ll}
N=2 & \text { "Parp Auto ?ur" } \\
N=3 & \text { Force Ramp Up and Iown". }
\end{array}
\]

\[
V=\begin{array}{lll}
2 V & p-p & (T P G) \\
4 V & p-p & (A T)
\end{array}
\]
\[
\text { VOL, } N=1 \text { "Master Volume" }
\]

\(\nabla=\begin{array}{lll}2 \nabla & p-p & (T P G) \\ 4 \nabla & p-p & (A T)\end{array}\)

\[
\begin{aligned}
& \text { For } N=1: \\
& V f= 4 V \quad r-0 \text { at FILT CUT } \\
& 1 . \operatorname{EV} \mathrm{V}-\mathrm{F} \text { for AT Wi.th CMI switched t.. MIC IN } \\
& 1.3 V \mathrm{p}-\mathrm{p} \text { for AT }
\end{aligned}
\]
\(N=1\) to 11, Filter Cutput:
\begin{tabular}{lccccc}
Test \(N\) & 1 & \(2-5\) & \(6-7\) & \(8-10\) & \(11-17\) \\
\(V f, V p-p\) & 4 & 3.8 & 3.4 & 3.2 & 1.5 \\
Vin, V -t & 2 & 2.2 & 2 & 2 & 3
\end{tabular}

All CMI modules, with the exception of the Audio, Front Panel a Power Supply rodules, plug directly into 78 pin edge conrecto rounted on the CMI motherboard PMB-Q1. This is ir turn mounted on rear of the CMI card cage. The motherboard is the means by which a logic signals and power supplies are routed betweer the plugmodules. This secticn specifies each of these siznals for each modul starting from the left.

All modules are "double sided" so require two columns of pins each connector. "Side A" refers to the wiring side of the board whi cor responds to the left hand column of pins when viewed from the fro of the card cage. Conversely, "Side \(B\) " refers to the compcaent side the board and connects to the right hand column of pins on the ed connector.

Pin nurbers nct included in the following lists are not used, a such pins are removed from the edge connectors before assembl Signals which are listed but have \(N / C\) marked as the source destination are those which have been connected to pins or the ed consector socket but have no connection leading to or from them on \(t\) motherboard.

Active-low signals are indicated by the name being overlined. A other signals are active-high. Where different nares have reen us for one signal going between various modules, the signal Name colu contains the name for the module of the current section, and \(t\) alternative name is enclosed in brackets in the SourcelDestinati colurn.
7. 1 Master Card CMI-22-Slot 1

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & \[
\begin{aligned}
& \text { Sigral } \\
& \text { Name }
\end{aligned}
\] & Function & Input or Output & ```
Source/
Destination
``` \\
\hline \(78-77\) & + 5 V & Lo弓ic power suprly & \(I / P\) & \\
\hline 76 & ALINT & A/D conversion IRQ & \(C / P\) & Q832 (II6z) \\
\hline 75 & P2IR2 & Interprocessor intrpt (F2 level 2) & \(C / P\) & 2032 (II22) \\
\hline \(74-67\) & \[
\begin{gathered}
\text { CHS } 7^{-}- \\
\text {CHS }
\end{gathered}
\] & Channel seleat mask & \(0 / \mathrm{P}\) & All channels \\
\hline 65 & FAMEN & Syster RAM enable & \(C / P\) & 64 K PAM (ABZ) \\
\hline 64 & IRQSYN & ACIA IRO (P1 level e) & \(I / P\) & 6832 \\
\hline 63 & VRAMEN & Graphics FAM enable & \(C / D\) & Groncs cont. \\
\hline 62 & IIS1 & PICU latch strcbe & \(I / F\) & Frocessor \\
\hline 61 & IA31 & PICU cascade & \(0 / 0\) & Q032 (IA41) \\
\hline 6Q-58 & \[
\begin{array}{r}
\text { IA21- } \\
\text { IA }
\end{array}
\] & Irterrupt vector address bits 1-3 & \(C / E\) & Processor \\
\hline 57 & IRO1 & Interrupt request to Processor 1 & \(0 / P\) & Processor \\
\hline 56 & IIRC & P1 IRQ from QQ32 PICU & \(I / P\) & 6832 (IR01) \\
\hline 54 & ELT & Processor 2 halt for A/ conversion & \(C / D\) & Processor \\
\hline 53 & SCAS & Channel memory column address strobe & \(0 / 8\) & All channels \\
\hline 52 & SRAS & Channel remory row address strobe & \(C / P\) & All channels \\
\hline 51 & SRA & Charrel row address multiplex signal & \(C / P\) & All channels \\
\hline 50 & SREF & Charnel memory refresh cycle & \(0 / \mathrm{P}\) & All charnels \\
\hline 48 & MOSC & Master pitch oscillator & \(0 / \mathrm{F}\) & All channels \\
\hline 47 & P1IR11 & P1 level 4 IRQ & \(\mathrm{I} / \mathrm{P}\) & N/C \\
\hline 46 & P1IR10 & P1 level 3 IRQ & \(I / P\) & N/C \\
\hline 44 & ADCLE & A/D convert clock & \(I / E\) & Channel 1 \\
\hline 42 & SYRES & System reset & \(I / P\) & Q032 \\
\hline 40 & ALI1 & Processor 1 's address on the buss (for VRAM enable) & \(I / P\) & Drocessor \\
\hline 37 & RA & Row address mux signal & \(I / P\) & Processor \\
\hline 36 & CA & Column address mux sig. & \(I / P\) & Processor \\
\hline 34 & CAS & Column address strobe & \(I / P\) & Processor \\
\hline 33-26 & IO-IT & Lata Buss & Both & Processor \\
\hline 25-10 & \[
\begin{aligned}
& \text { MAO - } \\
& M A 15
\end{aligned}
\] & Address Buss & I/P & Proc, QFC2 \\
\hline 9 & VMA & Valid Merrory Address & \(I / P\) & Proc, QFC2 \\
\hline 8 & R/W & Read/write & \(I / P\) & Proc, QFCZ \\
\hline 7 & Bey & Socket index key & & \\
\hline 6 & +12V & +12V supply rail & & \\
\hline 5,4 & +/-12VRTN & +/-12V supply return rai & 111 (->G & \\
\hline 3 & -12V & -12V supply rail & & \\
\hline 2,1 & GND & Ground rail & & \\
\hline
\end{tabular}

Side B
\begin{tabular}{|c|c|c|c|c|}
\hline & Signal & & Input or & Source/ \\
\hline Pin & Name & Furction & Output & Lestination \\
\hline & GND & Ground rail & & \\
\hline
\end{tabular}
```

7.2 Channel CaId CMI-@1 -.Slots z to 10

```

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & \begin{tabular}{l}
Signal \\
Name
\end{tabular} & Function & Input or output & Source/ Lestination \\
\hline 78.77 & +5V & +5才 Logic supgly & & \\
\hline 74 & CHS X & Ch. 7 select (Slot 10) & \(I / P\) & Master \\
\hline 73 & CHSX & Ch. 6 select (Slot 9) & \(I / P\) & Master \\
\hline 72 & CHS X & Ch. 5 select (Slot 8) & \(I / P\) & Master \\
\hline 71 & CHS X & Ch. 4 select (Slot 7) & \(I / P\) & Master \\
\hline \(7 \times\) & CHSX & Ch. 3 select (Slot 6) & \(I / D\) & Master \\
\hline 69 & CHSX & Ch. 2 select (Slot 5) & \(I / \mathrm{F}\) & Master \\
\hline 68 & CHSX & Ch. 1 select (Slot 4) & \(I / P\) & Master \\
\hline 67 & CBSX & Ch. \({ }^{\text {Coselect (Slot }}\) ) & \(I / P\) & Master \\
\hline 53 & SCAS & Charpel remory column address strobe & I / P & MastEr \\
\hline 52 & SRAS & Channel remory row address strobe & \(I / P\) & Master \\
\hline 51 & SPA & Charcel row address multiplex signal & I / P & Master \\
\hline 50 & SREF & Channel remory refresh cycle & I / P & Master \\
\hline 48 & NOSC & Master cscillator & \(I / P\) & Master \\
\hline 44 & ADCLK & A/L convert clock & \[
\begin{aligned}
& C / P \\
& C \operatorname{Ch.} 10
\end{aligned}
\] & \begin{tabular}{l}
Master \\
y)
\end{tabular} \\
\hline 42 & SYPIS & System reset & \(I / P\) & 6832 \\
\hline 37 & RA & Row address (timing) & \(I / F\) & Processor \\
\hline 34 & CAS & Colurn address strobe & \(I / P\) & Processor \\
\hline 33-26 & ID-I? & Iata Buss & Bot'n & Processor \\
\hline 25-21 & \[
\begin{gathered}
\text { NAQ } \\
\text { MA } 4
\end{gathered}
\] & Address buss & \(I / P\) & Proc, QFC2 \\
\hline 8 & R/W & Read/write & \(I / P\) & Proc, GFC2 \\
\hline 7 & \(\mathrm{X} \in \mathrm{y}\) & Socket index key & & \\
\hline 6 & +12V & +12V supoly rail & & \\
\hline 3 & -12V & -12V supply rail & & \\
\hline 2,1 & GND & Ground rail & & \\
\hline
\end{tabular}

Side B


\subsection*{7.3 Analog Interface Card CMI-07 - Slot 11}

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & Signal Name & Function & Input or cutput & \begin{tabular}{l}
Sourcel \\
Destination
\end{tabular} \\
\hline & & Lczic power supply & I/P & \\
\hline \(78-77\) & +5V & Lceic power suoply & I/P & Q232 \\
\hline 54 & FCXX & I/C ports access & \(\mathrm{C} / \mathrm{p}\) & \(\mathrm{N} / \mathrm{C}\) \\
\hline 46 & AIRC & AIC IRQ & I/P & 0832 \\
\hline 42 & SYRIS & System reset buss & I/P & processor \\
\hline 41 & ADD2 & P2 address on ouss & \(\underline{I} / \mathrm{P}\) & Processor \\
\hline 40 & ALD1 & P1 address on buss & I/P & processor \\
\hline 39 & P20/2 & P2 phase 2 reference & I/P & Processor \\
\hline 37 & FA & Row address rux sigual & I/F & Processor \\
\hline 36 & CA & Column address mux siz. & I/P & Processor \\
\hline 34 & CAS & Column address strobe & & \\
\hline 35 & RAS & Row address stote & & \\
\hline 33-26 & ID-I? & Iata Buss & Both & Proc, OFC2 \\
\hline 25-10 & MAg - & Address Buss & \(1 / \mathrm{P}\) & \\
\hline & MA15 & & & Proc, ofCz \\
\hline c & VMA & Valid Memory Address & I/P & Proc, ofce \\
\hline 8 & R/W & 员ead/write & & \\
\hline 7 & Gey & Socket index key & & \\
\hline 6 & +12V & +12V supply rail & & \\
\hline 5,4 & +/-12VRTN & +/-12V supply return & GND & \\
\hline 3 & -127 & -12V supply rail & & \\
\hline 2,1 & GND & Ground rail & & \\
\hline \multicolumn{5}{|l|}{Side B} \\
\hline & Signal & & Infut or & Source/ Destination \\
\hline Pin & Name & Function & Output & \\
\hline 44-46 & GND & Ground rail & & \\
\hline
\end{tabular}
```

7.4 Lizht Pen Interface G148-Slot 12

```

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & \[
\begin{aligned}
& \text { Signal } \\
& \text { Name }
\end{aligned}
\] & Function & Incut or Output & ```
Source/
Lestination
``` \\
\hline 78-77 & +57 & Logic power supply & \(I / P\) & \\
\hline 75 & GBIT & Grapbics bit clock & I/P & Grohcs cont.
(BITCLK) \\
\hline 75 & INVRT & Video invert & \(C / P\) & \begin{tabular}{l}
Grphcs cont. \\
(INV)
\end{tabular} \\
\hline 74 & TVEET & Not used on CMI & I/P & \(N / \mathrm{C}\) \\
\hline 72 & TVTSY & Not used on CMI & \(1 / 8\) & N/C \\
\hline \(6 \varepsilon\) & RINT & Light pen timer IRG & \(0 / \mathrm{P}\) & 0832 (IL12) \\
\hline 67 & PENINT & Ifght pen hit IRQ & \(0 / \mathrm{P}\) & Q032 (IL52) \\
\hline 66 & TOUCEINT & Light pen touch IRQ & C/P & Q032 (IL42) \\
\hline 61 & GR & Graphics syoc reset & I/P & Grphcs cont.
(RESET) \\
\hline 42 & SYEIS & System reset & \(1 / 8\) & Q832 \\
\hline 35 & F20/2 & F2 Fhase 2 reference & I/P & Processor \\
\hline 37 & RA & Row address (timing) & \(I / P\) & Processor \\
\hline 35 & CA & Colurn address (timing) & I/P & processor \\
\hline 34 & CAS & Cclurn address strobe & \(I / F\) & Processor \\
\hline 33-26 & [8-5? & Data Buss & Both & Processor \\
\hline 25-18 & NAB- & Address Buss & I/E & Proc, QFC 2 \\
\hline & Ma 15 & & & \\
\hline 9 & VMA & Valid Memory Address & 1/P & Proc, QFCz \\
\hline 8 & R/W & Read/write & I/P & Proc, qriz \\
\hline 7 & Key & Socket index key & & \\
\hline 6 & +127 & +127 supply rail & & \\
\hline 2,1 & GND & Grcuod radl & & \\
\hline
\end{tabular}

Side B - no connections
?.6 Processor Control (coz2) Module 0-0z2 - Slot 16
Side A

Signal
\begin{tabular}{ll}
Fin & \begin{tabular}{l}
Signal \\
lame
\end{tabular} \\
\(78-77\) & +5V \\
76 & IL32 \\
75 & II22 \\
74 & IL12 \\
73 & IIQ2 \\
72 & IL31 \\
71 & II21 \\
70 & IL11 \\
69 & IL21
\end{tabular}
\begin{tabular}{ll}
68 & ILS2 \\
\(67-64\) & IA42-IA1z \\
63 & IPC2
\end{tabular}
\begin{tabular}{ll}
63 & IRG2 \\
62 & ILS1 \\
\(61-58\) & IA41-IA11
\end{tabular}

IRC1
NMI2
NMII
EIS 2
日LTz
RES 1
PESE
\(\star 2\)
W 1
EMF
ACR1
REC1
RCMEN
SIRTS
ADE2
ALD1
REFC/2(2)
REFO/2(1)
RA
CA
CAS
I日-I?
NAK7-
MA15
VMA
R/W
Bey
\(+12 \nabla\)
\(-12 \nabla\)
GND

Function
Logic power supply
P2 level 3 IRQ
Pz level 2 IRO
\(\begin{array}{llll}P 2 & \text { level } & 1 & \text { IRQ } \\ P 2 & \text { level } & \text { IRQ } \\ P 1 & \text { level } & \text { IRQ } \\ P 1 & \text { level } & \text { IRQ } \\ \text { F1 level } & \text { IR } & \text { IRQ } \\ \text { P1 level } & \text { IRQ }\end{array}\)
PZ PICO lateh strobe
Pa intrpt vector addr.
P2 interrupt recuest
P1 PICU latch strobe
1 intrpt vector addr.
P1 interrupt request
P2 NMI request
P1 NMI request
P2 restart
Fz BALT
P1 restart
Pz restart
Pa halt acknowledge
P1 halt acknowledge
Refresh cycle
Input or output

Source/
out
Destination
\(I / P\)
I/P
N/C
I/F
\(I / \mathrm{P}\)
\(\mathrm{I} / \mathrm{P}\)
\(\mathrm{I} / \mathrm{P}\)
\(\mathrm{I} / \mathrm{F}\)
\(\mathrm{I} / \mathrm{P}\)
\(\mathrm{I} / \mathrm{P}\)
I/F
\(0 / P\)
\(\mathrm{C} / \mathrm{P}\)
\(I / P\)
\(0 / P\)
C/P
\(0 / P\)
\(0 / \mathrm{P}\)
\(C / P\)
C/P
\(0 / P\)
C/P Pnocesso
I/P Processor
I/P Processor
C/P E4I RAM
I/P Processor
0/P Processor
I/P Processor
o/P All modules
I/P Processor
I/P Processor
I/P Processor

I/P Processor
\(I / P \quad\) Processor
I/P Processor
I/P Processor
Both Processor I/P Proc, QFCZ
Address Buss
Valid Merory Address I/P Proc, QFC2
Read/write
+127 supply rail
\(-12 V\) supply rail
Ground rail
C.M.I. MAINFRAME SERVICE MANUAL - Page 108

Proe, QFC2 (normall All mads (ducing ref'

Side B
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & Signal Name & Function & Input or outout & \begin{tabular}{l}
Source/ \\
Lestination
\end{tabular} \\
\hline 76 & IL72 & P2 level 7 IRQ & \(I / P\) & \(\mathrm{N} / \mathrm{C}\) \\
\hline 75 & IL62 & P2 level 6 IRO & \(I / F\) & \[
\begin{aligned}
& \text { Master } \\
& (\text { P2IR2 })
\end{aligned}
\] \\
\hline 74 & IL52 & P2 level 5 IRO & \(I / P\) & IPI RINT \\
\hline 73 & II 42 & P2 level 4 IRO & \(I / P\) & LPI TOUCFINT \\
\hline 72 & IIT1 & P1 level \({ }^{\text {P }}\) IRO & \(I / E\) & Ch 6 CEINTX \\
\hline 71 & IL61 & P1 level 6 IRQ & \(I / E\) & Ch 4 CHINTX \\
\hline 78 & IL5 1 & P1 level 5 IPC & \(I / P\) & Ch 2 CHINIX \\
\hline 69 & II41 & P1 level 4 IRO & I/P & Ch 0 CHINTX \\
\hline \(\epsilon 8\) & IPGSYN & ACIA IRQ & \(C / P\) & Master \\
\hline 67 & IRGPA & User PIA IRQ A & \(0 / \mathrm{P}\) & \(\mathrm{N} / \mathrm{C}\) \\
\hline 66 & IROPB & User DIA IRQ B & \(0 / P\) & N/C \\
\hline 65 & RAMINH & \begin{tabular}{l}
Syster RAM disable \\
(enable cez2 card)
\end{tabular} & \(C / \mathrm{P}\) & \[
\begin{aligned}
& 64 K \text { RAM } \\
& (R A M E N)
\end{aligned}
\] \\
\hline E4 & FCXX & Maprari, I/O ports access & C/2 & 64 S PAM, AIC \\
\hline 62,61 & & Current locp TX & \(0 / P\) & \\
\hline 44-46 & GND & Ground rail (N/C) & & \\
\hline
\end{tabular}
```

7.7 Central Proressor Module 6-*26 - Slot 17

```

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline & Signal & & Incut or & Souree/ \\
\hline Pin & Name & Function & output & Lestinatior \\
\hline 78-77 & +5V & Lcgic power supzly & \(I / P\) & \\
\hline 68 & ILS 2 & P2 PICU latch strobe & \(0 / \mathrm{P}\) & 0032 \\
\hline 67-64 & IA42-IA12 & ?2 introt vector addr. & \(I / P\) & Q032 \\
\hline 63 & IRQ2 & P2 interrupt request & \(I / E\) & Q032 \\
\hline 62 & ILS 1 & P1 PICU latch strobe & \(0 / \mathrm{P}\) & C032 \\
\hline 61-58 & IA41-IA11 & P1 introt vector addr. & \(I / P\) & 2032 \\
\hline 57 & IP61 & P1 irterrupt request & \(I / P\) & 0832 \\
\hline 56 & NMI2 & P2 NMI request & \(I / P\) & Q232 \\
\hline 55 & NMII & P1 NMI request & \(I / E\) & Q032 \\
\hline 54 & 2TS2 & P2 restart & \(I / P\) & Q032 \\
\hline 53 & HLT2 & P2 HALT & \(I / P\) & Q232 \\
\hline 52 & P霫 1 & P1 restart & \(I / D\) & 0032 \\
\hline 51 & RES2 & F2 restart & \(I / P\) & 0832 \\
\hline 52 & W2 & P2 in wait state (BA) & \(0 / P\) & Q®32 \\
\hline 4 ¢ & W 1 & P1 in wait state (BA) & \(0 / P\) & 0032 \\
\hline 48 & ACK2 & Pz DMA acknowledee & \(C / P\) & QFC2 \\
\hline \(4 ?\) & FEQ2 & P2 DMA request & \(I / P\) & QFC2 \\
\hline 46 & ACK1 & Refresh cycle grant & \(C / P\) & Q832 \\
\hline 45 & REG1 & Refresh cyclerequest & \(I / F\) & Q832 \\
\hline 44 & RCMEN & Pestart ROM enable & \(C / P\) & Q032 \\
\hline 43 & CSC & Master proc. clock & \(C / P\) & N/C \\
\hline 42 & SYRES & System reset & \(I / P\) & Q232 \\
\hline 41 & ADD2 & P2 address on buss & \(0 / \mathrm{P}\) & All modules \\
\hline 40 & AID1 & P1 address on buss & \(0 / \mathrm{P}\) & All rodules \\
\hline 39 & REFO/2(2) & P2 phase 2 reference & \(0 / \mathrm{P}\) & All modules \\
\hline 38 & REFO/2(1) & P1 chase 1 reference & \(0 / P\) & All modules \\
\hline 37 & RA & Row address mux sienal & \(I / P\) & All rodules \\
\hline 36 & CA & Column address mux sig. & \(0 / \mathrm{P}\) & All modules \\
\hline 35 & RAS & Row address strote & \(0 / \mathrm{D}\) & All modules \\
\hline 34 & CAS & Colurn address strobe & O/F & All modul \(\mathrm{S}^{\text {S }}\) \\
\hline 33-26 & [D-I7 & Data Buss & Both & All modules \\
\hline 25-10 & \[
\begin{aligned}
& \text { MA: }- \\
& \text { MA } 15
\end{aligned}
\] & Address Buss & ITP O/P & All modules \\
\hline 9 & VMA & Valid Memory Address & I+PO/P & All modules \\
\hline 8 & R/W & Read/write & IPOO/P & All modules \\
\hline 7 & Bey & Socket index key & & \\
\hline 6 & +12V & +12V supply rail & & \\
\hline 2,1 & GND & Ground rail & & \\
\hline
\end{tabular}

Side B
\begin{tabular}{lll}
Pin & Signal & \\
Name & Function \\
\(44-46\) & GND & Ground rail
\end{tabular}
\begin{tabular}{ll}
Input or & Source/ \\
Output & Destination
\end{tabular} Output

Destination
7. Floppy Ifsc Controller QfC-2-Slot 18

Side A
\begin{tabular}{ll}
& Signa \\
Pin & Name \\
\(78-77\) & +5V \\
71 & EDL \\
70 & \(E T L\) \\
\(6 C\) & ENL \\
65 & \\
63 & IRGD \\
48 & ACEZ \\
47 & RDMA
\end{tabular}
\begin{tabular}{ll}
42 & SYRIS \\
41 & ALIZ \\
39 & \(2 C / 2\) \\
36 & CA \\
34 & CAS \\
\(33-26\) & ID-I? \\
\(25-10\) & MAD- \\
& MA15
\end{tabular}
\begin{tabular}{ll}
\(G\) & \(V M A\) \\
8 & \(R / W\) \\
7 & Key \\
6 & \(+12 V\) \\
3 & \(-12 V\) \\
2,1 & \(G N D\)
\end{tabular}

Side B
\begin{tabular}{llll}
& Signal & & Input or Source/ \\
Pin & Fame & Functicn & Cutput \\
\(44-46\) GND & Ground rail &
\end{tabular}
7.9 Graphics Controller -045 - Slot \(\mathcal{S}\)

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline & Sigral & & Input or & Sourze/ \\
\hline P1n & Name & Functicn & cutput & Destination \\
\hline 78-77 & +5V & Lcgic power supply & \(I / P\) & \\
\hline 76 & BITCLK & Graphics dot clock & C/P & LDI (GBIT) \\
\hline 75 & INV & Video invert & I/F & IFI (INVRT) \\
\hline 74-57 & CSD-CS7 & Graphics RAM bit mask & \(0 / P\) & Grphos RAM \\
\hline EE & \(G!D\) & Grourd via 44B-46B & & \\
\hline 65 & INBL & Graphics RAM enable & \(I / P\) & \[
\begin{aligned}
& \text { Master } \\
& \text { (VRAMEN) }
\end{aligned}
\] \\
\hline 64 & GND & Ground via \(4 \leq B-46 B\) & & \\
\hline 63 & EXRI & External Ready & \(C / P\) & N/C \\
\hline 61 & RESET & Graphics sync reset & \(0 / P\) & LPI (GR) \\
\hline \(E^{\circ}\) & SND & Ground via 443-46E & & \\
\hline \(5 ¢\) & 2UN & Video not-blank sieral & \(0 / \mathrm{P}\) & \(N / C\) \\
\hline 58 & GND & Ground via 44B-46E & & \\
\hline 57 & IINE & Horizontal sync & \(0 / 2\) & \(N / C\) \\
\hline 56 & CND & Grourd \(\nabla\) ia \(44 B-46 \mathrm{~B}\) & & \\
\hline 55 & BDR & Video byte clock & \(0 / \mathrm{P}\) & \(N / C\) \\
\hline 54 & GNI & Ground via 44B-4CE & & \\
\hline 53 & ESOR & FIFO shift out clock & \(0 / \mathrm{F}\) & N/C \\
\hline 51,49, & I, C, B, A & Lower 4 bits of raster & \(0 / P\) & \(N / C\) \\
\hline 47,45 & & lire courter & & \\
\hline 52,50, & GND & Ground via 44B-468 & & \\
\hline 48,46, & & & & \\
\hline 43 & INCA & FIFC shift in clock & O/D & N/C \\
\hline 42 & SYRES & System reset & \(I / P\) & 6832 \\
\hline 41 & ADD2 & P2 address on buss & \(I / D\) & Processor \\
\hline 40 & AID1 & F1 address on buss & \(I / P\) & Processor \\
\hline \(3 ¢\) & 0/22 & P2 phase 2 reference & \(I / P\) & Processor \\
\hline 38 & \(C / 21\) & P1 Ehase 2 Eeference & \(I / P\) & Processor \\
\hline 37 & RA & Row address (timing) & \(I / P\) & Processor \\
\hline 36 & CA & Column address (timing) & \(I / P\) & Processor \\
\hline 35 & RAS & Eow address strobe & \(I / P\) & Processor \\
\hline 33-26 & IO-I? & Syster Lata Buss & Both & Processor \\
\hline 25-10 & NAO - & System Address Euss & I / P & Proc, QFC2 \\
\hline 9 & VMA & Valid Mertory Address & \(I / P\) & Proc, QFC2 \\
\hline 8 & R/W & Read/write & \(I / P\) & Proc, QFC2 \\
\hline 7 & Bey & Socket index key & & \\
\hline 6 & +12V & +127 supply rail & & \\
\hline 3 & \(-12 \mathrm{~V}\) & -12V supply rail & & \\
\hline 2,1 & GND & Ground rail & & \\
\hline
\end{tabular}

Side B
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & \begin{tabular}{l}
Signal \\
Name
\end{tabular} & Function & Input or Output & Source/ Destination \\
\hline 44-46 & GND & Ground rail & & \\
\hline 33-26 & REO-RI7 & VRAM Data buss & Both & Grphcs RAM \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 25-12 & VA0-VA13 & VRAM & Address buss & \(C / D\) & \[
\begin{gathered}
\text { Grohcs PAM } \\
(\text { NAQ-MA14) }
\end{gathered}
\] \\
\hline ¢ & VVMA & VRAM & VMA & \(0 / \mathrm{P}\) & \begin{tabular}{l}
Grphos RAM \\
(VMA)
\end{tabular} \\
\hline 8 & VRW & VRAN & read/write & \(0 / \mathrm{P}\) & Grohcs RAM (\(\mathrm{R} / \mathrm{W}\)) \\
\hline
\end{tabular}
C.M.I. Mainframi SERVICB Manual - Page 113

Scanned by JB EMOND - www.fairlight.free.fr
7.10 16Z Graphics RAM 0-825-Sict 20

Side A
\begin{tabular}{|c|c|c|c|c|}
\hline Pin & Signal Name & Function & Input or Cutput & \begin{tabular}{l}
Source/ \\
Destination
\end{tabular} \\
\hline 78-77 & \(+5 \mathrm{~V}\) & LCEic power supply & \(1 / P\) & \\
\hline 75 & CS & Full byte enable & \(c / p\) & N/C \\
\hline 74-67 & CS0-CS7 & Read/write bit mask & I/F & Groncs cont. \\
\hline 65 & RAMINE & Graphics RaM disable & I / P & Tied high \\
\hline 48 & PFF & Refresh cycle & I/P & Tied high \\
\hline 37 & RA & Row address rux sienal & \(I / P\) & Proressor \\
\hline 36 & CA & Colume address mux sig. & \(I / P\) & Processor \\
\hline 35 & PAS & Fow address strobe & \(I / P\) & Processor \\
\hline 34 & CAS & Colurr address strote & I/F & Processor \\
\hline 33-26 & [0-I7 & vaam data buss & Eoth & \begin{tabular}{l}
Grphes cont \\
(\(\mathrm{FD} D-\mathrm{FD}\)))
\end{tabular} \\
\hline 25-12 & MAG-MA13 & Vrar Address buss & I/ F & Grohes cort
\[
(V A C-V A 14)
\] \\
\hline 11,18 & MA14,MA15 & vrem Aderess M.s. 2 tits & \(I / P\) & Tied low \\
\hline ¢ & VMA & Valid Merory Address & I/P & \begin{tabular}{l}
Grohcs cont \\
(VVMA)
\end{tabular} \\
\hline 8 & R/W & Reach/urite & I/P & Grohes cont (VRW) \\
\hline
\end{tabular}

Side \(E\)
\begin{tabular}{|c|c|c|c|c|}
\hline & Signal Name & Function & Input or Output & \[
\begin{aligned}
& \text { Source/ } \\
& \text { Destination }
\end{aligned}
\] \\
\hline in & & Funcion & & \\
\hline 44-46 & GND & Ground rail & & \\
\hline
\end{tabular}

\section*{ع.g SIGNAL LIST - EXTERNAL CONNECTIONS}
8.1 A.C. Mains
A.C. Mains Neutral, Active and Ground.
8. 2 Graphics Power
A.C. Mains supply to Graphics Terminal. Switched by key switch on mainframe. This supply is always the same as the local rains potential.
8.3 Graphics

Video signal to Graphics Terminal and Light Pen signals to mainframe.

Connector Type: Cannon 5-pin.
Pin 1 Lighten Bit. T.T.L. level, asserted low. Cr oscilloscope, appears as a series of low-going pulses about jus wide, repeated every 20 m , when the pen is pointed at a bright area cf the screen. (See fig \(3 a\))

Pin 2 ifghtpen Signal Return. Ground for lighten signal cables.

Pin 3 Lighten Touch. T.T.L. level, asserted low. Normally approx +4 volts, goes low (less than 0.4 V) when the end of the lighten touched.

Pin 4 Video Return. Ground for Video signal cable.
Pin 5 Composite Video. IV F-F video signal to Groaphics display. Format is 625 lines, 50 Ez frame rate. (See fig 3)

\section*{E. 4 Keyboard Power}

Unregulated power supply to music keyboard (also indiectl surplies alphanureric keybcard).

Connector Type: Carnor 7-pin.
Pins \(1,2+10 \mathrm{~V}\) Return. Return (eround) for +10 V supply.
Pins 2, \(\underline{4}^{+10 V}\) Supply. Unregulated supply, + © to +11 volts.
Pir \(5 \quad-20 \mathrm{~V}\) Supply. Unregulated suprly, -18 to -22 volts.
Pin \(6+20,-20\) Return. Return (grourd) for + ard - 2 supplies.

Pin \(7 \quad+\) eqV Supply. Unregulated supply, +18 to +22 volts.

\subsection*{8.5 Keyboard}

Bi-directional serial data between mainfrare and music keybcard including busy" flags in both directions. Power supply is als carried by this cable, to fower the alpha-numeric keybcard if i is connected instead of the music keyboard.

Connector Type: \(Q^{\text {Pin "D-Mini" }}\)
Pin \(1 \quad+18\) to 22 volts uaregulated supply. This is not used bi the music keyboard.

Pin 2 ION1. Signal to enable trarsifision of data from th keyboard. RS-232 levels. Enabled: >7 volts. Lisabled < 7 volts. With nothing being transmitted from th keyboard, this signal should be at aporox. +10 volts When keys are pressed or released a burst of -12 vol pulses should be seen for between 2 and 1 rilliseconds.

Pin \(3-18\) to -22 volts unregulated supply. This is not usec by the rusic keyboard.

Pin 4 FLAG1. Signal to diasble transmission of data from th mainframe to the keytoard. Signal is normally +1 volts.

Pin 5 SIGNAL RETURN. Ground for data paths.
Pin \(6 \quad\) IATA IN. Serial data from keyboard to mainframe. Fcrma is RS-232. Normally at -18 volts. When a key is presse or released a burst of +10 volt pulses lasting approx \(z \mathrm{mS}\) sholud be seen.

Pin 7 FOWBR RETURN. Return (Ground) for + and - supplies.
Pin 8 . Not Connected.

Pin 9 LATA1. Serial data from mainframe to keyboard. Forma is RS-232. Normally at -1\& vclts. For each characte sent from the mainframe to the alpha-nureric display turst of +10 volt pulses lasting apmrox. 1 ms should \(b\) seen.

\subsection*{8.6 Printer}
 to mainframe, plus "device on" signal used to switch on printe in readiness to receive data.

Connector type: Cannon 5 pin.
Pin 1 Signal Ground.
Pin 2 Not connected.
Pin 3 FiAG日. "Busy" flag from fricter. RS-232 levels.<volts when printer ready, \(>+7\) vclts when printer busy.

Pin 4 IONQ. "Device On" control from mainframe to printer AS-232 level, \(>+7\) volts to eable grinter, \(\langle-7\) volts \(t\) diatle printer. This signal is optional as som printers do not require it.

P1日 5 IATAP. Serial data to orinter. RS-232 levels, ASCI format. Normally at -10 volts. For each character sen fror. the mainframe to the printer a burst of \(+1 \theta\) vol pulses lasting approx. 1 mS should be seen.

\subsection*{8.7 Phones}

Output for driving headphones. Mcritors the MIXID IINE output Internally, this output is taken from the MONITOR (speaker output via a 100 ohm resistor.

Connector type: \(1 / 4^{\prime \prime}(6.25 \mathrm{MM})\) stereo phoro jack.
The following signal lists refer to connectors on the rear of th C.M.I. Nainframe.

\subsection*{8.8 Monitor}

Cutput for driving a monitor speaker. The internal monit arplifier will deliver a maximum of 20 watts R.M.S. into an 8 o speaker. Note that the Mainframe is fitted with a 1 arp speak fuse which will blow if the monitor amplifier is driven to fu cutput urder load for more than a secord.

Connector Type: Cannon 3 pin.
Pins 1,2 Ground
Pin 3 Active. With all channels producing a full-amplitu sinewave and the MONITOR control turned up to the poi of clipping, this output should be approx. 38 volts F (with no load)
E.G Channels 1-8

Individual channel outputs (balanced, 600 chrs impedance).
Connector type: Cannon 3 pin.
Pin 1 Grcund
Pin 2 Cutput cold. Anti-phase output, maximum level 3 Volts P-P.

Pin 3 Output Hot. Maximum level 3.7 volts P-P.
ع.1e Mixed Line Output
Mixed output of all eight channels (balanced, 600 ohn impedance).

Connector Type: Cannon 3-Pin
Pin 1 Ground
Pin 2 Cutput Cold. Anti-phase outçut, maximum level 3 volts P-P.

Pir 3 Outfut Hot. Maximum level 3.? volts P-P.

\section*{ع. 11 Sync}

Synchronising input and output, for use with Music compositio Languge (Page C) or Keytoard Sequencer (Page 9). This connecto serves as both ar input and ouput.

Connector type: Cannon \(3-p i n\).
Pin 1 GROUND
Pin 2 Sync Input. Pulses or tone of 1 to 20 volts \(\mathrm{F}-\mathrm{P}\) Waveform urimportant. Frequency range 2 Hz to 5 kHz Impedance 10 K ohms.

Pin 3 Click Cutput. Pericdic pulse, rate cortrolled by Page Sequercer or M.C.L. (Page C). Wareform is a spike o approx. 5 volts peak, approx. 5 mS wide, alternatel. positive and regative going.

\section*{ع. 12 Filter Out}

Cutput of the bandpass fllter used by the Analogue to Disita sorperter. It is designed to enable the operator to monitor th effect of various bandpass filter settings.

Connector type: Cancon 3-pin.
Pir 1 GROUND
Din 2 GROUND
Pin 3 CUTfUT. Arolitude for full-scale conversion is 18 volt P-P. Source impedance 600 ohms.

\section*{ع.13 Mic In}

Balanced, \(60 \varepsilon\) ohms input suitable for high output dynamic o condenser microphones. When the MIC/LINE switch is in the MI position, this input is fed to the Analogue to Digital converter

Connector Type: Cannon 3-pia
Pin 1 GROUND
Pin 2 INPUT A
Pin 3 INPUT B

\section*{ع. 14 Line In}
```

Balenced, 608 ohm line level input. This input is connected
tre Aralogue to Digital converter when the MIC/LINE switch is i
the LINE position.
Connector Type: Canncn 3-pin
Pir 1 GRCUND
Din 2 INPUT A. Amplitude of 1.4 volts P-P required for ful
scale corversion.
Pin 3 INPUT B. Amplitude of 1.4 volts P-P required for ful
scale conversicn.

```

\subsection*{8.15 AIC IIRFCT}

Eirect input to the Analogue to Digital converter when the \(A D\) IIRFCT/ MIC IINE switch is in the ADC IIRECT position. Becaus this input is Direct Coupled, ary D.C. offset on this input wil result in a D.C. shift of a sound sample.

Connector Type: Cannon 3-pin.
Pin 1 G?OUNI
Pin 2 GROUND
Din 3 INPUT. Arplitude for full scale conversion is 10 volt F-P.
```

C.C REMCVE/REPさACE PROCELURES
Q.1 CIPCUIT BCARD RFNCVE/KEPIACE
C.2 EISK LRIVE REMOVE/REPIACE
Q.3 REAP PANEL REMCVE/REPLACE
G.4 AUIIO EOARI CMI-Q4 REMOVE/REPIACE
G.5 FAN ASSEMRIY REMOVE/REPEACE
Q.6 MCTHEFBCAPD CMI-D5 RENCVE/REPLACE
G.7 POKER SUPPLY REGUTATOR REMOVI/REPIACF
Q.8 I.C. SUPPLY REMCVE/REDIACE
G.G CARI CAGE FIMOVT/REIIACE

```

\subsection*{10.0 PETAIR PRCCEDURE}

Having identified the falty item, the following procedure is recommended:
1) Circuit Card Faults. Replace with spare card and returr to Fairlight for repair.
2) Power Supply Faults. Fepair following remove/replace instructicns, functional description and related drawings.
z) Disk Drive Faults. Replace with soare drive. If fault is rinor (e.g. alignrent) adjust as per Fairlight Iisk Lrive Service Manual. In case of other fault, return to qualified Y. F. Iata service centre or Fairlight for repair.
4) Electrical Faults. Repair by referring to appropriate wiring diagrams. Certain cable assemblies are available as spare Darts frci Fairlight (e.z. disk drive 5a-way ribbon).
E) Mechanical Faults. Mechanical damafe caused by wear ard tear or accidental darase should be rectified by replacing the daraged item. Refer to section 16 (Ixploded Views) below to identify the required part(s) for crdering.
©cT

\section*{11. 0 PEEVENTATIVE MAINTENANCE}

The following procedures snould be carried out every \(180 \in\) hours \(c\) operation.
1) Revove the top cover of the Mainframe and clean the mesh above th fans using a vacuum cleaner.
2) Unplug each circuit board, remove dust depbsits from components an clean edge connector fingers using a soft cloth and a no-residu solvent such as frecn. Check that the polarising key is properl installed in position 7 of each edge connertor socket befor replacing the cards.
z) Check all cables for signs of mechanical darase e.z.fraying Ensure that all cornectors are in good condition, especially ras termination ribbon connectors.
4) Check for mechanical darage such as bent parels or loose screws.
5) Check out all electronic functions using the Chain Tests (Refer t section 6 above).
6) Check disk drives as per Disk Irive Maintenance Manual.

\begin{tabular}{|c|c|c|c|c|c|}
\hline ITEM & DESCRIPTION & AEO'D & MATERIAL & \multicolumn{2}{|l|}{PEMARKS} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{SCALE} & PASSED & DATE \\
\hline & & & & 1/7/1982 & 11/04/19? \\
\hline
\end{tabular}

Scanned by JB EMOND - www.fairlight.free.fr

\footnotetext{
\(=\)
}

Scanned by JB EMOND - www.fairlight.free.fr

LINK B'S FOR SEPERATE DATA AND CLOCK
link a's for non seperated data and clock

FLOPPY DISK CONTROLLER FORMATTER

Scanned by JB EMOND - www.fairlight.free.fr

\section*{)}
```

    12.؟ CMID1 SCHEMATIC
    ** NOT FOP. DUBLICATION **
    ```


Front Stide of PC.B showing
heatsinks ano oaderlate

Component sioe of pC. B showng heatsinks
(with baseplate removed)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\pm C C\). & TYPE & IESCPIFTION & LOC. & TYPE & IESCRIPTION \\
\hline A1-A4 & 745 S 240 & OCTAL INVERTER & D1 & 74LS 174 & HEX F/EDC \\
\hline AE & ? 4LS \(2 \leq 1\) & cCtal zusfers & [2 & 74LS13E & IUAL İCOIER \\
\hline A? & T4LS373 & octal iatches & 53 & ELANX & \\
\hline A9 & 74LS122 & GUAD SCE.NAND & -5-D12 & 4116 & 16\% Rim \\
\hline A11 & F4LS17 & trifie nane & & & \\
\hline E1 & r.4SS 174 & REX F/FLOP & \(\underline{1}\) & 74IS 18 & TRIPIE NAND \\
\hline E2 & \(7 \leq L S 158\) & IATA SELECTOPS & E2 & P4ISED & OUAD NAND \\
\hline E3 & 7415189 & 64 BIT SAM & 13 & 7415240 & CCTAL IATT. \\
\hline E5-812 & 4116 & 16 K Ram & F5-12 & 4116 & 16K RAM \\
\hline C1 & ? 4LS 14 & HEX SCE.INVT & F 1
F 2 & 7484
745540 & EEX INVT. CCTAI INTT. \\
\hline C2 & 74 LS 30 & EINEUT NANL & F5-F12 & 4116 & 16K RAM \\
\hline C3 & \(74 \mathrm{LS268}\) & GUAL IX. NCR & & & \\
\hline & \multicolumn{2}{|l|}{RESISTORS} & & \multicolumn{2}{|l|}{CAPACITORS} \\
\hline & =1-F5 & \(4{ }^{4} 7\) & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & Re & 680R & & & \\
\hline & R7 & 1K5 & & \multicolumn{2}{|l|}{168UF 48 V EIEC?.} \\
\hline & PISISTC? & Dacz & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SWITCH}} \\
\hline & RE1 & 4 K ? & & & \\
\hline & RP2,3 & E6R & & & \\
\hline & FP4,5 & \(180 \%\) & & \multicolumn{2}{|l|}{ZENER DICDE} \\
\hline & RPR & 478 R & & \multicolumn{2}{|l|}{\[
5 \mathrm{~V} 1
\]} \\
\hline & RP7 & 12 R & & & \\
\hline & RP8 & 4782 & & & \\
\hline & RPS & 108R & & & \\
\hline & \multicolumn{5}{|l|}{RP18,11 478R} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline LCC. & TYPE & DESCRIPTION & LCC. & TYPE & DESCRIPTICN \\
\hline A1-AX & をT¢7 & REX TRI-BUFFER & [1,2 & 74LS74 & IJAL F/FLOP \\
\hline A4 & 74IS133 & 13 INPUT NAND & L3 & \(74 \pm 537\) & QUAD NAND \\
\hline A5 & 74LS 84 & gex Inverters & [4 & 74 LS170 & LUAL İCODERS \\
\hline A6-A8 & ET¢? & HEX TRI-EUFEER & [5 & 74LS74 & LUAL F/FLOP \\
\hline \multirow[t]{2}{*}{AS} & \multirow[t]{2}{*}{74LS14} & \multirow[t]{2}{*}{HEX SCH INVERT} & D6 & 8T98 & HEX TEI-INVERT \\
\hline & & & I7 & ces02 & GUAD NO? \\
\hline B1-84 & 74LS 153 & BINERY CCUNTER & 58 & 74574 & EUAL \(\overline{\mathrm{F}} / \mathrm{F}\) LOP \\
\hline B5,6 & ?4LS75 & GJAD F/FICP & D9 & 74LS74 & DUAL F/FLCP \\
\hline \(\mathrm{B}^{\prime}, \mathrm{\varepsilon}\) & r4LS266 & GUAD EX. NOR & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{E}_{1} \\
& \mathrm{E} 2,3
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \subseteq \in Z 2 \\
& 74 \mathrm{LSOL}
\end{aligned}
\]} & \multirow[t]{2}{*}{QUAD NO?} \\
\hline \multirow[t]{2}{*}{BS} & \multirow[t]{2}{*}{\[
7404
\]} & \multirow[t]{2}{*}{HEXINVT.} & & & \\
\hline & & & & & PUAD NCR \\
\hline C1 & \[
74 L S 174
\] & EIX F/FLCP & E 5 & 74LS00 & GUAD NANI \\
\hline C2 & 74LS135 & IUAL EECOEER & I6 & 74 LS 18 & TRIPLE NAND \\
\hline C3 & 74LS08 & CUAD NAND & E? & 74574 & DUAL F/FIC? \\
\hline C 4 & & EXX F/FICP & F8 & 74 LS 32 & GUAD ANI \\
\hline C5 & \[
\begin{aligned}
& 5,4 \mathrm{~L} \subseteq 174 \\
& 5 \pi \subseteq ? ~
\end{aligned}
\] & & ES & 741588 & GUAD AND \\
\hline C6. 5 & \multicolumn{2}{|l|}{FD17T1 FLCPPY CCNTRCL} & & & \\
\hline C8 & \multicolumn{2}{|l|}{\(74 L S O D\) GUAD NAND} & & & \\
\hline \(C ¢\) & \multicolumn{2}{|l|}{T4LSOZ GUAD NAND C.C.} & & & \\
\hline & \multicolumn{2}{|l|}{PESISTORS} & & \multicolumn{2}{|l|}{CAPACITCRS} \\
\hline & R1-33 & 1K8 & & C1 & IUF TAG. \\
\hline & R.5. \(\epsilon\) & 18X & & C2, 3 & SRCV STYRC. \\
\hline & P. 7 & 683 & & 0.810 F & MCNO CEPM. \\
\hline & Re & 158? & & Q.10F & MONO CEEM. \\
\hline & RS, 18 & 4 5 ? & & 47 UF & \(25 V\) ELET. \\
\hline & R11-R15 & 150\% & & pegulato & R 7985 (-5V) \\
\hline & VR1,2 & 5 ETHIMI TURN & & 58 WAY & EEADER \\
\hline & & & & SW1 & SPET \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ICC． & TYPE & IFSCRIFTICN & LOC． & TYPE & IESCRIPTION \\
\hline A1－A4 & 74LS 157 & IATA SELECT． & 11－13 & \(74 \mathrm{SS161}\) & SYNC CCUNT． \\
\hline A5 & 74LS133 & 13 INP．NAND & D4 & 74 ¢S 14 & EEX SCE．INVT \\
\hline AE & ？ 4 LS 14 & HEX SCE．INVT． & I5 & 74LS12 & TRIPIE NAND \\
\hline 4 ？ & 8T2e & EUS XCVE． & D6 & 74166 & SEIET REGISTER \\
\hline A 8 & \(\varepsilon T ¢ \in\) & ATX T．S．TXCVR． & I？ & 22511 & FIFC \\
\hline AS & 74LS 14 & HEX SCH．INVT． & D8 & \(7 \leq 5 S 20\) & CUAD NAND \\
\hline A 18 & 74508 & QUAD AND & DG & 74588 & OUAD AND \\
\hline & & & I18 & \(\bigcirc 316\) & CCUNTER \\
\hline E1－B5 & \(74 \pm\) 153 & BINERY COUNT & & & \\
\hline 25 & ？4LS174 & HEX F／FLC？ & \(E 1\) & \(74 L 5139\) & GUAL DECODER \\
\hline B？ & عT28 & EUS TXCVR． & F2 & 74511 & TRIPLE AND \\
\hline BE & r4TS13¢ & IUAL DECOIER & E2．5 & \(7 \leq 04\) & HEX INVT． \\
\hline P9 & ？4LS10 & TRIPLE NAND & E3 & 745S86 & GUAD EX．OR \\
\hline 31a & 74528 & GUAL AND & E5 & 4807 & LUAL COMP．PAI？ \\
\hline & & & E8 & 74ISQ2 & QUAD NAND \\
\hline C1 & 74LS74 & EUAL F／FICP & EG & \(? \leq 84\) & HEX INVT． \\
\hline C2，3 & 74LS193 & IUAL DECOIER & を1\＆ & 74 IS 151 & SINC COUNTER． \\
\hline C 4 & 7451393 & IUAL CCUNTER & & & \\
\hline C5 & 7484 & HEX INVERTER & F1 & 7409 & QUAD AND O．C． \\
\hline C6 & ¢ 2 L C8 & CCTAL IATCE & 54 & こ6ST2 & MONOSTABLE \\
\hline C？ & \(\bigcirc 3 ¢ \varepsilon\) & DCTAL IATCE & \(F 6\) & 2621N & VIIEO GEN． \\
\hline C？ & 74S74 & EUAL F／FICD & \(F 7\) & 9602 & MONCSTABLE \\
\hline CS & 「4IS88 & GUAL AND & Fe & 74 IS74 & DUAL \(5 / F L O P\) \\
\hline C10 & \(74 \leq 2\) & ECI－DEC．CONVT． & FS，10 & 74 LS 161 & SYNC COUNTER \\
\hline
\end{tabular}

RESISTCRS
\begin{tabular}{ll}
\(R 1\) & \(22 K\) \\
\(P 2\) & \(27 K\) \\
\(R Z\) & \(1 K\) \\
\(R C\) & \(1 K\) \\
\(R 5\) & \(330 K\) \\
\(R E\) & \(2 K 2\) \\
\(R 7\) & \(2 K 2\) \\
\(R 8\) & \(10 Z\) \\
\(R G\) & \(12 K\) \\
\(R 10\) & \(4 K 7\) \\
\(R 11\) & \(1 M O\) \\
\(R 12\) & \(19 K\) \\
\(R 13\) & \(4 K 7\) \\
\(R 14\) & \(56 R\) \\
（R15－22） & \(4 K 7\) \\
\(R 23\) & \(47 Q R\) \\
（R24－27） & \(4 K 7\) \\
\(1 G K\) & \(M O L I T\)
\end{tabular}

VR1 1 QK MOLIT TURN VR2 EK2 MULTI TURN
\begin{tabular}{|c|c|}
\hline R28 & 12 R \\
\hline R29 & 120R \\
\hline P3 & 68？ \\
\hline Rこ1 & 478ล \\
\hline R32 & 戠乐 \\
\hline Rころ & 68？ \\
\hline 234 & 120R \\
\hline R35 & 18R \\
\hline F36 & 4788 \\
\hline 品ご？ & 120R \\
\hline R38 & 478R \\
\hline R29 & 130 \\
\hline R41 & 122R \\
\hline R42 & 1K0 \\
\hline R43 & 220n \\
\hline R44 & 4K7 \\
\hline R45－52 & 180 \\
\hline
\end{tabular}

FESISTCRS

\begin{tabular}{|c|c|c|c|c|c|}
\hline LCC. & TYPE & LESCRIPTION & LOC. & TYEE & descripticn \\
\hline A 1 & IS123 & 13 I/P NANL & C1 & ISA4 & HEX INVERT. \\
\hline A2 & LS84 & HEX INVERT. & C2 & IS 10 & TRIPIE NANE \\
\hline 43 & LS174 & HEX F/FLCD & C3,7 & LS2S5 & SHIFT PEGISTE \\
\hline A4, 5 & عT2¢ & CUAD BUS TXCVER & C8 & IS161 & PINARY COUNTE \\
\hline AE & IS 14 & HEX SCE.INVERT. & & & \\
\hline A? & IS2S5 & SHIFT REGISTER & D1 & LSO2 & QUAD NOR \\
\hline A8 & LS74 & IUAL F/FIOP & L2 & IS86 & CUAD EXCI.OR \\
\hline & & & [3 & IS353 & LUAL COUNTER \\
\hline P1 & LS84 & HEX INVERT. & D4 & LS 161 & BINARY COUNTE \\
\hline 32 & LS1z¢ & IOAL MULTIPLEX & [5,6 & IS265 & GTJAL EXCL.NO? \\
\hline 83 & IS2S5 & SHIFT REGISTER & D7,8 & IS 153 & EUAL MUSTIPIEX \\
\hline P4 & E¢ 40 & TIMEP. & & & \\
\hline B6 & ¢821 & FIA & さ1 & ISee & QUAD NAND \\
\hline B7 & LS2S5 & SHIFT REGISTER & E2 & LS?4 & ITAL F/ELOP \\
\hline B8 & IS161 & EINARY CCUNTER & E3 & LS221 & DUAI MCNO \\
\hline & & & I4 & ISca & PIX INVERT. \\
\hline 01 & 2N2369 & TRANSISTOR & E5 & こS 28 & IUAL NAND \\
\hline Q2, 3 & EC108 & TRANSISTCP & E6 & LS?4 & DUAL F/FLOP \\
\hline & & & I? & & LS 14 EEX SC \\
\hline EE & LS 153 & DUAL MULTIPLEX & & & \\
\hline & RESISTO & & & FESIS & CRS \\
\hline R1 & EK2 & & R16 & 688? & \\
\hline R2 & 217 & & R17 & 10K & \\
\hline P3-6 & 120R & & R18 & 1 M & \\
\hline R7, \(\varepsilon\) & 19 R & & R1E & 2308 & \\
\hline R. 5 & 2K2 & & R20 & 22er & \\
\hline R10 & 120 K & & R21 & 338 R & \\
\hline R11 & 19 B & & 222 & 220R & \\
\hline R12 & 232 & & R23 & 478 R & \\
\hline P. 13 & 18 & & R24-28 & 4 K ? & \\
\hline R14 & 1 M & & R29 & 1 Cl R & \\
\hline R15 & 220x & & & & \\
\hline & CAPACI & RS & & CAFAC & TCRS \\
\hline C1-4 & 150 PF & & C10-13 & 190 N & \\
\hline C5, 6 & 1 NF & & C14 & 22UF & \\
\hline C7 & 100 N & & C15 & 478 P & \\
\hline C8 & 10 F & TAG. & C16 & 190.9 & \\
\hline CS & 150 PF & & & & \\
\hline & & & 0.01 UF & MONO & ERM. \\
\hline & MISCEL & Ansods & 0.10 F & MONO & ERM. \\
\hline S01 & 10 WAY & ghamer & 47 UF 25 & & ECT. \\
\hline
\end{tabular}

14．E CMI GE MASTER CARD
\begin{tabular}{|c|c|c|c|c|c|}
\hline LCC． & TYPE & IESCRIETICN & SOC． & TYPE & EISCRIPTICN \\
\hline A1 & LS 133 & \(13 \mathrm{I} / \mathrm{D}\) NAND & D1 & LS 63 & OUAD NAND O．C． \\
\hline A2，3 & IS 14 & HEX INVT．SCE． & E2 & LS 123 & IUAL MONO STAB． \\
\hline A 4 & IS174 & HEX F／FICP & E3 & LS 74 & DUAL F／ELOP \\
\hline A 5 & ET2E & CUAD BUS TXCVR． & I4 & IS138 & ExCOIER \\
\hline \(A \in\) & \(\epsilon \in 40\) & TIMER & ES & ISE2 & QUAD NOR \\
\hline A？ & LS3E？ & HEX EUS DRIVE？ & D10 & 7497 & PATE MULT． \\
\hline A8 & IS14 & GEX INYT．SCE． & & & \\
\hline \(A \subseteq\) & 「E11 & POM & E1 & 4851 & MULTIPLEXER \\
\hline A10 & ISOO & OUAD NAND & E2 & IS 14 & HEX INVT．SCH． \\
\hline & & & 「3 & 741 & OP AMP \\
\hline 31 & IS21 & IUAE 4 I／P AND & E4 & AD7523 & A－D CONVT． \\
\hline B2 & IS80 & GUAD NAND & E5 & 6821 & PIA \\
\hline BZ & IS12 & TRIPEE NAND & E？ & 3140 & FET OP AMP \\
\hline B4 & IS 1 こ8 & IECCDER & E8 & LS 151 & COUNTER \\
\hline D 5 & をT2E & GUAD EUS TXCVR． & 29 & AD583 & S／BCLD \\
\hline B7 & S1？5 & GUAL F／FICP & E10 & S74 & DTAL E／FLOP \\
\hline B8 & TE11 & GOM & & & \\
\hline B9 & 6821 & EIA & F1， 5 & 4051 & MUITIPIEXER \\
\hline B1a & ISng & GUAL NAND & F7，8 & 4051 & MULTIPLEXER \\
\hline & & & F10 & 4051 & MUITIPIEXER \\
\hline C1 & IS74 & LUAL F／ELOP & & & \\
\hline C？ & ISO2 & GUAL NO？ & & \multicolumn{2}{|l|}{MISCELIANECUS} \\
\hline C3 & US 11 & TRIFEE AND & Q 1 & \multicolumn{2}{|l|}{2N2369} \\
\hline C 4 & ISOO & GUAD NAND & 2D1，2 & \multicolumn{2}{|l|}{5 V 6} \\
\hline C5．7 & ISごて & CCT．IATCE & ［1，2 & \multicolumn{2}{|l|}{1 N 4984} \\
\hline C8 & ع214 & FRIORITY ENCOE． & ここ， 4 & \multicolumn{2}{|l|}{1N9 14} \\
\hline C18 & 7497 & PATE NULT． & D5 & \multicolumn{2}{|l|}{MBP120P SCHOTTKY} \\
\hline & & & L1 & \multicolumn{2}{|l|}{1UH CEOKE} \\
\hline & & & L2 & \multicolumn{2}{|l|}{FERRITE BEAD} \\
\hline & & & CRST． & \multicolumn{2}{|l|}{\[
34.2917 \mathrm{NHZ}
\]} \\
\hline & & & 10 WAY & \multicolumn{2}{|l|}{HEALER} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & RISISTOR & & RISIS & & RESIS \\
\hline P1 & 4K？ & R39 & 188K & R63 & 22K \\
\hline R2 & 56 P & R49 & 56K & R64 & 3¢ \\
\hline R3－12 & 4 17 & R41 & 3K¢ & R65 & 68 K \\
\hline R13 & 180R & P42 & 5K6 & R6¢ & 1503 \\
\hline R14 & 22K & 843 & 882 & R67 & 12K \\
\hline R 15－18 & 56R & R 44 & 12K & R68 & 680R \\
\hline P19 & \％\({ }_{\text {¢ }}^{\text {¢ }}\) & F45 & 18 I & RE9 & 11 \\
\hline R20 & ＊\＃\＃＊ & R 46 & 33I & R78 & \(1 \mathrm{L5}\) \\
\hline R21 & ER6 & R47 & 56K & R71 & 178 \\
\hline F22 & 1801 & R48 & 180K & R72 & 3K3 \\
\hline R23 & 106R & R49 & 56K & R73 & 5K6 \\
\hline R24 & 150K & R50 & 3EG & R74 & 188 \\
\hline R25 & 5K6 & R51 & 536 & R75 & 22K \\
\hline R26 & 487 & 252 & 812 & R76 & 3 M 3 \\
\hline R27 & 1807 & R53 & 12K & R77 & 182\％ \\
\hline R28 & 12 & R54 & 18K & R78 & 2788 \\
\hline R29－30 & 18 I & R55 & 338 & R7S & 2Sek \\
\hline R31 & E6R & R56 & 568 & R80 & 560K \\
\hline P32 & 3K9 & R 57 & 180\％ & R81 & 820x \\
\hline R33 & EK6 & R 58 & 82I & Rôe & 1M5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2．24 & E \(\times 2\) & & P．5s & 4X7 & & R83 & 2M7 \\
\hline R 35 & 12K & & R68 & 6K6 & & R84 & 4 MP \\
\hline P． 36 & 18 I & & P61 & 18K & & Re 5 & 10K \\
\hline R37 & ここロ & & R62 & 15K & & R8E－8？ & 680R \\
\hline R38 & EヒK & & & & & & \\
\hline RP1 & 182 & & & & & & \\
\hline & CAPA & ORS & & & & CAFAC & ITCRS \\
\hline C1 & 56 P & & & & C10 & － 47 N & －10RS \\
\hline C2，3 & 4 TUF & & & & C11 & 180 P & \\
\hline C4，5 & E8af & & & & C12 & 47 N & \\
\hline C6 & 12 N & & & & C13 & 188 P & \\
\hline C7 & 1 N & & & & C14 & 47 N & \\
\hline C8 & 17 UF & & & & C15 & 10 FF & \\
\hline \(C \subseteq\) & EN8 & & & & C16 & 47 N & \\
\hline 0.81 UF & & MCNC & CERM． & & 47 UF & 25 V & ELECT． \\
\hline 9．1UF & & MONO & CERM． & & & & EエEC． \\
\hline \multicolumn{8}{|l|}{14．S CMİ1 CEANNEL CARD} \\
\hline
\end{tabular}
14.10 CMI 04 AUEIC CADD
\begin{tabular}{|c|c|c|c|c|c|}
\hline LOC. & TYPI & IESCPIFTICN & LOC. & TYFE & IESCRIPTION \\
\hline IC1-4 & 4136 & CUAL OP AMP & & TRANS & CRS \\
\hline IC5-10. & 301 & CD AMP & 21 & 2N3055 & \\
\hline IC11 & \% & & 62 & 2N2S55 & \\
\hline IC12 & 541 & AMP & cz-6 & EC185 & \\
\hline IC13 & 7815 & REG. 15V & \(Q 7\) & 2N3638 & \\
\hline IC14 & 7¢15 & R.EG.-15V & 68 & 2N364 & \\
\hline IC15 & 741 & CP AMP & & & \\
\hline & \multicolumn{2}{|l|}{CAPACITORS} & & MISCE & NEOUS \\
\hline C1,2 & \multicolumn{2}{|l|}{128 N} & [1,2 & \(1 \mathrm{~N} \leq \mathrm{CC}\) & \\
\hline C3 & \multicolumn{2}{|l|}{130 VF} & 2D1-3 & 3 V 9 & \\
\hline C 4 & \multicolumn{2}{|l|}{z¢95} & REIAY & NF2 12 & \\
\hline C5 & \multicolumn{2}{|l|}{12QUF} & FUS E & 2A SIO & BIO \\
\hline C6 & \multicolumn{2}{|l|}{180 N} & & & \\
\hline C7 & \multicolumn{2}{|l|}{1 1,gut} & & CAPAC & 2S \\
\hline c8 & \multicolumn{2}{|l|}{188 N} & C40 & 18P & \\
\hline C9 & \multicolumn{2}{|l|}{120 UF} & C41 & 335 & \\
\hline C19 & \multicolumn{2}{|l|}{100 N} & C42 & 12F & \\
\hline C11 & \multicolumn{2}{|l|}{E.8UF} & C43 & 6.8 UF & \\
\hline C12 & \multicolumn{2}{|l|}{*} & C44 & 33p & \\
\hline C13 & \multicolumn{2}{|l|}{18 N} & C45 & 47 VF & \\
\hline C14 & \multicolumn{2}{|l|}{18xN} & C4E & 2Pz & \\
\hline C15 & \multicolumn{2}{|l|}{4 P 7} & C4? & 1 N & \\
\hline C16 & \multicolumn{2}{|l|}{6.8UF} & C48 & 1UF & \\
\hline C17 & \multicolumn{2}{|l|}{188N} & C45 & 18 CN & \\
\hline C18-35 & \multicolumn{2}{|l|}{G. 2 UF} & C50 & 100 UF & \\
\hline Cこ6, 37 & \multicolumn{2}{|l|}{33P} & & & \\
\hline \multirow[t]{2}{*}{C38,3¢} & \multicolumn{2}{|l|}{E.8UF} & & & \\
\hline & \multicolumn{2}{|l|}{RESISTORS} & & PESIS & \\
\hline R1 & \multicolumn{2}{|l|}{16K} & R64-71 & 2X7 & \\
\hline R2 & \multicolumn{2}{|l|}{EfX} & R72,72 & 10K & \\
\hline 83 & 100E & & R? 74 & 112 & \\
\hline R4 & \multicolumn{2}{|l|}{1 B} & R75,76 & 23 2 R & \\
\hline R5 & \multicolumn{2}{|l|}{56K} & R7? & 10K & \\
\hline P. 6 & \multicolumn{2}{|l|}{4 R 7} & R78 & 22K & \\
\hline P. 7 & \multicolumn{2}{|l|}{100R} & R79 & 11 & \\
\hline R8-23 & \multicolumn{2}{|l|}{320R} & R80 & 68RR & \\
\hline R24 & \multicolumn{2}{|l|}{2T2} & R81,82 & 10 K & \\
\hline R25 & \multicolumn{2}{|l|}{\(5 \times 6\)} & R83 & 682R & \\
\hline R26-28 & \multicolumn{2}{|l|}{108} & R84,85 & 330 R & \\
\hline F29 & \multicolumn{2}{|l|}{2 F 7} & R86 & 2 2 2 & \\
\hline R29 & \multicolumn{2}{|l|}{Ex6} & P87-89 & 19 S & \\
\hline R31-33 & \multicolumn{2}{|l|}{10R} & RSO-S3 & 689 R & \\
\hline R34 & \multicolumn{2}{|l|}{2K7} & R94 & 108K & \\
\hline R35 & \multicolumn{2}{|l|}{EK6} & R95 & 2K2 & \\
\hline R36-38 & \multicolumn{2}{|l|}{101} & R¢6 & 180K & \\
\hline R39 & \multicolumn{2}{|l|}{2K7} & R97 & 33K & \\
\hline R49 & \multicolumn{2}{|l|}{ER6} & RS8 & 1 R & \\
\hline R41-43 & \multicolumn{2}{|l|}{16K} & RGS & 2X2 & \\
\hline R44 & \multicolumn{2}{|l|}{2K2} & R100-3 & 10K & \\
\hline R45 & \multicolumn{2}{|l|}{ER6} & 2104 & 11 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 346－48 & \(19 R\) & 3105 & ヵャネ \\
\hline R 4 C & 2K？ & R106 & 衣れか \\
\hline P． 50 & 5 K 6 & R187 & 56\％ \\
\hline R51－53 & 17， 8 & R188 & 56， \\
\hline R 54 & EK7 & そ10 & 2K2 \\
\hline R 55 & EK6 & F110 & 278． \\
\hline R56－58 & \(1 \pi 8\) & 2111－8 & 5K6 \\
\hline R5S & 2K？ & & \\
\hline R60 & SK6 & & \\
\hline RE1－63 & 19 K & & \\
\hline
\end{tabular}
14.11 GPSA REGULATED PCKER SUPPLY
\begin{tabular}{|c|c|c|c|c|c|}
\hline LOC． & TYPE & IESCRIPTION & EOC． & TYPE & SESCRIPTICN \\
\hline Q1，2 & AS215 & ECWER TRAN． & IC1 & 7885 & 5V REG． \\
\hline 63－6 & 2N3e55 & FOWE？tran． & IC2 & 7824 & 24 V REG． \\
\hline Q7 & MJ4E82 & POWER TRAN． & IC3 & 7812 & 12 V REG． \\
\hline 2D1 & E2X79 & 5V6 2INEP． & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { IC4 } \\
& \text { SCR1 }
\end{aligned}
\]} & 7912 & \multirow[t]{2}{*}{－12V P．EG．} \\
\hline \multirow[t]{2}{*}{2D2} & 1N5ここの & 5V6 ZENER & & IR30B & \\
\hline & \multicolumn{2}{|l|}{RESISTORS} & & \multicolumn{2}{|l|}{RISISTCRS} \\
\hline R1 & 0.012 & & P． 12 & 338 R & \\
\hline 2.2 & 223 & 5W & R12 & 23： & \(5 \%\) \\
\hline R \(3-6\) & 18R & 1W & R14 & 8.51 & \(5 \%\) \\
\hline R7－11 & Q．22R & 5＊ & & & \\
\hline & CAPACI & ORS & & CAPACI & \\
\hline C5 & \(\epsilon \varepsilon \varnothing\) UF & ELECT． & C12 & 22 UF & TANT． \\
\hline C6 & 47 UF & ELECT． & C13 & 0.1 & \\
\hline C7 & 4798 & ELECT． & C14，15 & 180 UF & LEECT． \\
\hline C & \(47 \quad 4\) & ELECT． & C1E & 8.81 & \\
\hline c & 1 UF & TANT． & C17．18 & 47 UF & ELECT． \\
\hline C1a & 1 U & TANT． & C15 & Q． 1 & \\
\hline C11 & 8.1 UF & & & & \\
\hline FS1 & FK15 & 5A FUSE & & & \\
\hline
\end{tabular}
14.12 C2こ6 FRONT PANEL CONTROL CARI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { IOC. } \\
& \text { IC1 } \\
& \text { IC2 }
\end{aligned}
\]} & TYP & IESCRIPTION & LOC. & TYPE & LESCRIPTION \\
\hline & 14411 & EAUD RATE GEN. & L1, 3 & LED & YELION \\
\hline & IS14 & HEX SCE.INVERT. & L4, 5 & IED & RED \\
\hline \multirow[b]{2}{*}{P1.2} & \multicolumn{2}{|l|}{RESISTORS} & \multicolumn{3}{|c|}{SWITCEES} \\
\hline & 2? 0 P. & & S'W1 & - 8125 & SPDT \\
\hline R 2 & عK2 & & \(5 \times 2\) & 7211 & LPDT \\
\hline R4 & 18 R & & SWZ & 8125 & SPDT \\
\hline R 5 & 560 R & & SW4 & 7211 & DPDT \\
\hline P. 6 & 1008 & & SWE & 7101 & SPDT \\
\hline \multirow[t]{3}{*}{R7} & \multirow[t]{2}{*}{1 k} & & SW6 & 7181 & SPDT \\
\hline & & & SW7 & 7181 & SPDT \\
\hline & \multicolumn{2}{|l|}{CAPACITOAS} & SW & 8 POS & ROTARY \\
\hline C1,2 & \multicolumn{2}{|l|}{18N} & 5 T & 8 WAY & IN-LINE \\
\hline C3 & 47UF & ELECT. & & & \\
\hline \multicolumn{6}{|l|}{C?YST. 1.84こ2ME2} \\
\hline S 01 & 25 WAY & CABLE CONECTOR & & & \\
\hline
\end{tabular}

\section*{)}

\section*{FAIRLIGHT}

COMPUTER MUSICAL INSTRUMENT
DISC DRIVE SERVICE MANUAL

> Revision 1.0
> July 1982
\(C m^{I}\)

\section*{CONTENTS}
1. Introcuction1
2. Removal and Installation of Disc Drives
3. Disc Drive Set-up anci Alignment 2
3.1 Pre-alignment Set-up2
3. 2 Disc Drive Alignment 2
3.2.1 Radiai Alignment 2
3.2.2 Track Zero Sensor Test 3
4. Disc Drive Maintenance 4
4.1 Preventive Maintenance 4
4.l.l Visual Check 4
4.1.2 Cleaning 4
4.2 PCB Removal andi Repiacement \(j\)
4.3 Index Lamp Assembiy 5
4.3.1 Service Check 5
4.3.2 Removai and Replacement \(j\)
4.4 Index Sensor Assembiy o4.4.1 Service Cneck
4.4.2 Removal and Replacement ú
4.5 Track 00 Sensor Assemoly 7
4.5.1 Service Cneck 7
4.5.2 Renoval and Replacement 7
4.6 Write protect Sensor Assemoly 7
4.6.1 Jervice Check 7 7
4.6.2 Removal and. Replacement 7
4.7 Bail Assembly, Removal and Replacement 8
4.8 In Use Led, Removal and Replacement 8
4.9 Steei Belt Wiper, Removal and Replacement 9
4.10 Drive Belt and Pulley, Removal and Replacenent 10
4.11 Drive Motor Assembly, Removal and Replacement 10
5. Floppy Disc System Diagnosis 13
5.1 Test Program CHECK 13
5.2 Test Program DSKTST 16

\section*{i. Introduction}

Eacn CMI has two YE-Data YD-174 8-incn Eloppy disc drive installed as standard equipment. The left hand drive, as viewe Irom the front of the CMI, is referred to as Drive 0 and normall contains the CMI system Disc winch is used to boot the syste during restart. The right hand drive, Drive l, contains th user's work disc.

This document contains information pertaining to th installation and removal of disc drives, set-up and alignment o new drives, preventative and basic corrective maintenance, an disc system fault diagnosis.

\section*{2. Removal and Installation of Disc Drives (Refer to drawing DMCOOl) \(V D-180\) hor 2}

To remove either or both \(Y D-174\) units, first remove the top oottom, and rear panels of the CMI according to the mainfram disassembly procedure. Then perform the following procedure:
(1) Carefully up-end the CMI so that it rests on its left hand end, on a non-scratching surface.
(2) Remove the 50-way flat cable from the rear of both drives.
(3) Remove the 3-way \(A C\) power connector and the 6-way \(D C\) power connector from the rear of both drives.
(4) Each drive is supported in the CMI mainframe by four screws (item 25 in DMCOOl). Two of these pass through the top aluminium panel (13) and the other two pass tnrough the oottom panel (14). Remove these screws and slide the disc drive out through the front.

Installation of a \(Y\) D-174 unit is the reverse process.

0150
0150
\(\$ 1\)
\[
\because \leq: r \text { DPJ } \because \because \quad \because \because I C H I \because
\]

On the Disk drive Frints Sircuit Board there aro two itoms which must be locatod．

Looking at the \(P / C\) Board component side，on the Top Left fand corner is the serial numbcr，just to the left are some oftion pins markod DSl DE2 DES DS4
These are the \(D / D r i v e\) position numbers

Near tine 50 way connestor there are two sockets which ap：ear at right angles to most ż ihe IC，s．In these sockets are terminating resistors for the 50 way signal cable in the form of an IC marked छeckmar e？ョ－3－R150．
 as Drive C ar． C tif other vlosest the right hand side is known as Drive I．

DRIVE）O
1．shortiny lut should bs cn DSl
2．Terminating Eesisto：si：＝uld be removed．
DRIVE 1
1．Eiorting luz Enoul三 幺 ■ 「こ
2．Terminatina \(\overrightarrow{F o s i s t c r}\)＝

\section*{3. Disc Drive setup and Alignment}
(3) Link 'Y' at location \(G 4\) on the disc drive p.c.b. (see Fig 4.6)
(4) Link 'C', level with row \(E\) near the edge connector on the disc drive p.c.b.
(5) For drive 0 , link \(D S 1\) on p.c.b. For drive 1, link DS 2. Both links are level with row I.
(6) Remove link block package at \(E l\) and open circuit links ' \(X\) ' and ' \(Z\) ' (break legs off link block package).
(7) Reinstall link block

DRIVE 1 (righthanddrive)
(8) Check that or ye in the CMI, out not both, has two 150 ohm termination resistor packs installed. alongside the edge connector.

\subsection*{3.2 Disc Drive Alignment}

New disc drives require the radial alignment of the read/ write head and the track zero sensor to be checked to account for any maladjustments which may occur during shipping. This requires a special Radial Alignment Disc, (Fairlicht Port No Go fob plus the Faimight Disk Dagnotic Disk cartouing the
(1) Place the drive on its side, with the main drive motor towards the bottom.
(2) Connect an oscilloscope (CRO) as follows to the block of test pins marked "TP" near the centre of the YE Data P.c.b. (see fig. 4.6):
Pin
A
\(B\)
3

GRO
Channel A
Channel \(B\)
Ext trig
(3) Set the CRO as follows:

Inputs on \(A C\)
trig on external negative
time base to \(20 \mathrm{~ms} / \mathrm{div}\)
```

C.M.I. Disc Drive Service Manual
add channels A and B
invert one channel
vertical sensitivity to lo0mv/div

```
(4) Load a disc containing the test program DSKTST and run it by typing DSKTST<CR>.
(5) type
\(R A, D, S\langle C R\rangle \quad\) where \(D=\) drive number (0 or 1)
\(S=\) side numider (0 or 1)
(6) Insert Alignment Disc and nit a key. This steps tne head to track 38.
(7) A "double eye" pattern should appear on the CRO. The ampiitudes of the two lobes must be within \(70 \%\) of each other.
(8) If side 0 is acceptaiole, repeat test for side 1
(9) If either side requires adjustment, loosen tine two Philips nead screws which clamp the head carriage assembly to the steel stepper motor belt. The screws are accessed througn two noles in the side of tine drive chassis.
(10) Gently tap the carriage assembly or move the belt by hand until the loDes are within \(70 \%\) amplitude with the screws retigntened (tightening the screws tends to change the lobe pattern), for both sides of the disc.
(11) Hit ESC to terminate the radial alignment test.
3.2.2 Track zero Sensor Test

After the nead is radially aligned, the track 00 sensor should be checked.
(1) Still running DSKTST, type
\[
\text { TO,D where } D=\text { drive }(0 \text { or } 1)
\]
(2) Insert a scratch disc and hit any key.
(3) To causes the head to oscillate between track 00 and track 01. Monitor the sensor signal at pin Bl2 of the J 2 connector block on the drive p.c.b. It should oscillate with movement of the head.
(4) Terminate test by hitting ESC

\section*{4. Disc Drive Maintenance}

Under normal circumstances preventive maintenance is n required on the YD-174. If severely dirty environments a encountered, an occasional cleaning of the drive may be perform to assure continued reliable performance.

Only basic corrective maintenance is documented here. If is determined that a disc drive requires more extensive repairs than are described in this section, return the unit to fairlig Instruments for service. This document should provide sufficie information to determine whether return of the unit is necessar

\subsection*{4.1 Preventive Maintenance}

Under normal circumstances preventive maintenance is required on the YD-174. If severely dirty environments a encountered, an occasional cleaning of the drive may be perform to assure contiued reliable performance.

\subsection*{4.1.1 Visual Check}

Visual inspection is the first step in any maintenan operation. Always look for corrosion, dirt, wear, binds, a loose connections. Noticing these items may save downtime later

\subsection*{4.1.2 Cleaning}

Cleanliness cannot be overemphasized in maintenance of \(t\) YD-174.

Caution: The head/carriage assembly is a factory-adjusted a tested assembly. Do not try to adjust or repair this intern component. Do not, for any reason, clean the read/write head To do so would cause severe damage to the nead surfaces or he spring supports.
parts
Observe
Procedure
1. Main Frame

Inspect for loose screws, Clean main frame connectors, switcnes, etc.
2. Drive Belt Frayed or weakened area Change new belt

\subsection*{4.2 PCB Removal and Replacement}
1. Disconnect all connectors (Jl, J2, J3, J5) from PCB.
2. Remove two mounting screws near the \(J l\) connector and loos two screws on the \(J 2\) edge of the PCB.
3. Slide \(P C B\) away from stepper and remove it.
4. Reverse the procedure for replacement.
4.3 Index Lamp Assembly
4.3.1 Service Cneck
1. Turn on power.
2. Verify voltage of 2.0 to 3.4 V between "J2-B8" and "GND" test points on PCB.

\subsection*{4.3.2 Removal and Replacement}
l. Disconnect \(J 2\) connector from PCB.
2. Remove two lamp leads from \(J 2\) connector by pushing down on tans with a tweezer (BLACK to J2-A8, RED to J2-B8).
3. Remove cable clamp and lamp cable.
4. Remove two mounting screws and lamp assembly.
5. Reverse the procedure for replacement.

Note: When installing the assembly, align the pointer of la assembly with the timing line of index sensor assembly a tighten two mounting screws by pushing lamp. assembly again carrier stop away from the front door.

Caution: Make sure the locking tabs on the terminals engage the connector slot to prevent the leads from pushing out wh plugged in.

Fig. 4.1 Index Lamp Assembly

\subsection*{4.4 Index Sensor Assembly}
4.4.1 Service Check
1. Turn on power.
2. Verify the voltage of 4 to 5.25 V when disc door is closed without a Diskette, and 0 to 0.3 V when a Diskette is inserted backwards and door closed, between "J2-A7" and " GND " test points on PCB.
3. Repeat the same procedure between "J2-A6" and " GND " test points on PCB.
4. Remove the Diskette.

\subsection*{4.4.2 Removal and Replacement}
1. Disconnect J 2 connector from PCB .
2. Remove four SENSOR leads from J2 connector by pushing down on tabs with a tweezer. (BLACK to J2-A7 RED to J2-B7, BLUE to J2-A6, ORANGE to J2-B6)
3. Remove screw, washer and assembly.
4. Reverse the procedure for replacement.

Note: When installing assembly, push it away from its cable, against the main frame stop.
Caution: Make sure that the locking tabs on the terminals engage in the connector slot to prevent the leads from pushing out when plugged in.

Fig 4.2 Index sensor assembly

\subsection*{4.5 Track 00 Sensor Assembly}

\subsection*{4.5.1 Service Check}
1. Position the head/carriage by hand to its limit away from spindle (the outer edge of TRACK 00).
2. Turn on power.

Note: This positions head/carriage to TRACK 00.
3. Verify voltage of 1.0 to 1.7 V between "J2-Bl2" and " GND " test points on PCB without a Diskette.
4. Verify voltage of 0 to 0.3 V between "J2-All" " GND " test points on PCB.
5. With power off, move the head/carriage by hand toward spindle, 4 stepper detent positions. (TRACK 04)
6. With power on, verify voltage of 4.0 to 5.25 V between the same test points in step 4.
4.5.2 Removal and Replacement
1. Disconnect J 2 connector from PCB .
2. Remove four leads from \(J 2\) connector by pushing down on tabs with a tweezer. (BLUE to J2-A12, ORANGE to J2-Bl2, BLACK TO J2-All, RED to J2-B11).
3. Remove the mounting screw and assembly.

Note: When installing assembly, insert its two pins into main frame holes and tighten mounting screw.

Caution: Make sure that the locking tabs on the terminals engage in the connector slot to prevent the leads from pushing out when plugged in.

\subsection*{4.6 Write Protect Sensor Assembly}

\subsection*{4.6.1 Service Check}
1. Turn on power.
2. Verify voltage of 1.0 to 1.7 V between \(J 2-B 14\) and \("\) GND test points on PCB without a Diskette.
3. Verify voltage of 4 to 5.25 V when door is closed and 0.03 V when a Diskette without a write protect notch is inserted anc the door closed, between "J2-A13" and " GND " test points or PCB.
4. Remove the Diskette.
4.6.2 Removal and Replacement
1. Disconnect J2 connector from PCB.
2. Remove four leads from \(J 2\) connector by pushing down on tabs with a tweezer. (BLUE to J2-Al4 ORANGE to J2-B14 BLACK tc J2-Al3 RED to J2-B13)
3. With door open, remove the bail mounting screw, washer anc bail. (Refer to section 4.7)
4. Remove the mounting screw and assembly.
5. Reverse the procedure for replacement.

Note: When installing assembly, insert its pin into the ma frame hole and tighten the mounting screw.

Caution: Make sure that the locking tans on the terminals engag in the connector slot to prevent the leads from pusining out whe plugged in.
4.7 Bail Assembly, Removal and Replacement

Caution: The read/write heads must not be allowed to com together without a piece of clean paper inserted between the hea surfaces.
1. Insert a piece of clean paper between the nead surfaces.
2. Remove the bail mounting screw and washer.
3. Remove bail assembly, pulling away from solenoid.
4. Reverse the procedure for replacement.

Note: Check that the plunger may be moved when pushing it fro the side.

Caution: When installing the bail assembly, make sure that it i placed under the carriage arm tab.
4.8 In Use Led, Removal and Replacement
1. Disconnect J2 connector from PCB.
2. Remove two leads from \(J 2\) connector by pushing down on tai with a tweezer. (BLACK to J2-Al5 RED to J2-Bl5)
3. Remove LED holder and LED.
4. Reverse the procedure for replacement.

\subsection*{4.9 Steel Belt Wiper, Removal and Replacement}
1. The belt dustseal cover is obscured by the pop-up assemb which ejects the disc when the door is opened. With do open, remove the two mounting screws on the pop-up assemb and the assembly itself.
2. Remove the two cover retaining screws and dustseal cover.
3. Remove wiper from dustseal cover.
4. Reverse the procedure for replacement.

Note: when installing a new wiper into dustseal cover, push against the cover stop toward the arrow direction on cover.

Caution: When installing dustseal cover on stepper, align \(t\) dustseal cover so that wiper may slightly touch steel be between head/carriage and pulley.

Adjust cover so that wiper slightly touch steel belt

Push wiper against 'over stop when installing

Fig. 4.3 Steel Belt Wiper
4.10 Drive Belt and Pulley, Removal and Replacement
1. Remove PCB. (Refer to section 4.2)
2. Remove belt.
3. Loosen pulley setscrew and remove pulley from motor shaft.
4. Reverse the procedure for replacement. Align the setscrew with the flat surface of motor shaft.

Note: Check that the surface of the pulley is aligned with the end of the motor shaft.

Note: Check that the belt is riding on the center of the spindle pulley and drive puliey, rotating spindle pulley counterclockwise by hand.

\section*{Proverly installed}

Improperly installed

Fig. 4.4 Drive Pulley

\section*{4.ll Drive Motor Assembly, Removal and Replacement}
1. Remove \(P C B\) (refer to section 4.2) and drive belt (4.10)
2. Loosen pulley setscrew and remove setscrew from motor shaft.
3. Remove \(A C\) connector from connector clamp by pushing down on latch.
4. Remove the two screws which hold the capacitor clamp to the disc drive body.
5. Remove the three screws securing the drive motor and withdraw the motor.
6. Reverse the procedure for installation.

Note: When installing the motor, push it toward the front door and the \(A C\) connector clamp against two main frame stops.

Note: Make sure the ground lead is installed on the capacitor clamp.

1

Fig 4.5 Drive Motor and Capacitor
)
```

C.M.I. Disc Drive Service Manual

```


PN110018-02 REV.D

Fig. 4.6 PCB Test point and Connector Locations

The CMI Floppy Disc System comprises the QFC-2 Floppy Dis Controller as well as the disc drives themselves. The first ste in servicing a CMI with an apparently faulty disc system is t establish in what subassembly the fault actually lies.

The general procedure to follow in disc system fault tracing is:
(l) Check all disc system cables, especially the 50 way fla cable for open circuits or shorts and ensure al connections are secure.
(2) Use the system test program CHECK to determine if the fault is in the drive itself (or the diskette) or the disc controller/DMA data transfer system.
(3) If the disc drive is faulty, use DSKTST to further analyse the fault.
(4) Otherwise, refer to the CMI Mainframe manual to trace th fault in the QFC-2 controller.

\subsection*{5.1 Test Program CHECK}

Allows checking of
- Cyclic Redundancy Check (CRC) errors
- Data transfer between memory and disc
- RAM bit corruption errors

Command Syntax
CHECK <UNIT>, <HEXNUM>; <OPTIONS>
<UNIT>: : \(=\) <COLON> <NUMBER>
<HEX NUMBER>: : = <HEX DIGIT> |<HEX DIGIT>
<HEX DIGIT>: \(:=\langle\) NUMBER \(\rangle|A| B|C| D|E| F\)
<NUMBER> \(::=1|2| 3|4| 5|6| 7|8| 9 \mid 0\)
(1) Disc Integrity Check

Options: none required
This is the default CHECK routine. Entire disc in specified drive is read to check for CRC errors.
(2) Read Data D.M.A. Verify

Option: V

C.M.I. Disc Drive Service Manual separate blocks of memory and verifies data against itself.
(3) Write Data D.M.A. Verify

Options: W,D (May be used together)

The \(W\) option creates a file, writes distinctive data to each sector of the file and reads each sector of the file back, twice, into different areas of memory for verification. All unfree disc space will be allocated to the file.

The \(D\) option is a destructive (to the disc contents) test which writes a unique "ADD -29" pattern to each sector in an interleaved fashion, reads it back, and verifies the data.

Interleaving of blocks ensures track boundaries are continually being crossed. A delay can be introduced using the "T" option (see below) to isolate head-load timing problems.
(4) Other Options
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
P=X X \\
\text { number }>
\end{array}
\] & W \\
\hline \(E=X X\) & all \\
\hline \[
\begin{gathered}
T=X X \\
\text { read/write }
\end{gathered}
\] & all \\
\hline C & all \\
\hline \[
\stackrel{\text { printer }}{\text { pr }}
\] & all \\
\hline
\end{tabular}
(5) Error messages
(a) Disc Read/Write Errors These are of the form
use random number pattern instead of " 29 " pattern
use pattern \(X X\) where \(X X=\) che
write the pattern to disc, read back and verify
print error if total recoverable disc errors exceed XX where \(X X=\) <hex number>. Default value is 0 .
delay \(X X * 10 \mathrm{~ms}\). after
where \(X X=\) <hex number>
test continously alternating between 'add-29' and a random number pattern
all error messages printed
where \(h\) is not significant
i = drive number
\(j=\) physical sector number at which the error occurred
and the status byte can be interpreted as follows:
31 data C.R.C. error
32 disc is write protected
33 disc is not ready for some reason
34 deleted data address mark read
35 abnormal command termination
36 invalid sector address
37 seek error (track not found)
38 data mark read error
39 address mark read error
(b) Verify Errors

When a verify error is encountered the offending disc sector is re-read into the QDOS sector buffer and matched against system RAM to determine where the error came from. The program then reports the corresponding address in RAM, the data expected, the erroneous data, the physical sector number of the disc where the error occured, and the byte offset within the sector.
(6) Termination

Test is terminated by -
ESC key (sets system error status word)
More then 20 errors logged
User supplied iteration counter expired (default l)
System error status word will be set if any error condition has been reported.

\section*{5. 2 Test program DSKTST}

DSKTST comprises five main test routines and a number of utility commands. The main routines are as follows -
\#1 Write/read test
(destructive)
\#2 Read C.R.C. test
(non-destructive)
\#3 Worst case seek test
(non-destructive)
\#4 Worst case data pattern \(R / W\) (destructive)
\#5 Sector/drive uniqueness
(destructive)
Tests can be run separately or in destructive/non-destruct groups by typing as follows -
```

DN,(0 or 1 or B) {,X]<CR> (Do all non-destruct tests)
DD,(O or }1\mathrm{ or B) [,X]<CR> (DO all destructive tests)
ST\#<tests>, (0 or 1 or $B$ ) $[, X]<C R>$
where <tests> = up to 10 test numbers separated by '-'

```

The extended test option \(X\) accumulates error counts over a number of passes.

ESC key will abort test in progress
Typing \(O S<C R>\) will return the user to QDas and reboot th system.

Examples: DN, \(0<C R>\) does all non-destructive tests drive 0 only.

ST\#1-3-5, \(B, X\) does tests 1,3 and 5 on both drive with error count accumulation.

If stop on error option is selected (in answer to a prompt) the user may choose -
\(C\) continue
L loop
R reset stop on error
if an error stop occurs.

\section*{Error Reporting}

Error printouts take the following form :-
<drive no.> <error type> <track no> / <physical sector no> <*>
Presence of '*' indictes a "hard" disc error
e.g. I E3 1F/0325*
means :- drive no 1
error type 3 (E3)
track no \(1 F\)
p.s.n 0325
error was not recoverable on retry (*)
C.M.I. Disc, Drive Service Manual

If after three retries the error persists, it will be logged as a hard error (indicated by *).

Error types are as follows (per QDOS ROM codes) :-
El data CRC error
E2 disc is write protected
E3 disc is not ready for some. reason
E4 deleted data address mark read
E5 abnormal command termination
E6 invalid sector address
E7 seek error (track not found)
E8 data mark read error
E9 address mark read error

Additional error types are :-
E@ data read back is not the same as data written
Additional error types from the drive uniqueness test are :-
EA body of data buffer is not zero after test data EB unique data for this drive/sector is incorrect.

\section*{Error Graphs}

Errors may be summarised by use of the ' \(P G\) ' command. This summary plots the track no. as the vertical ordinate and the number of errors as the horizontal ordinate.

A horizontal line may contain up to 11 error types (codes) with each character representing (\(n\) *horizontal scale) errors

The error graph is divided into two blocks. The left hand block relates to drive 0 errors, the right hand block to drive 1.

The graph is printed starting at the first track with errors logged and finishes with the last track with errors logged.

To stop the display rolling off the screen, <control W> can be used to stop printing. Subsequent carriage returns will print a little at a time, an escape will terminate the ' PG', and any other character will resume continuous printin

In the case of double sided systems, each disc 'cylinder' is considered as two tracks, so even track numbers correspon to side 0 of the disc and odd track numbers correspond to side 1 .

Utility Commands
Commands for utility programmes are as follows

HD,d,hhhh Head load timing test on drive d at speed hhhh (\(100 \mathrm{~ms}=\mathrm{D} 8 \mathrm{FO}\))

IX, Index sensor alignment test on drive d. \(t l=t k\) l. \(t 2=t k 76\).

AT, d, s
\(R A, d, s\)

AZ, d, s

TO, d

SK, d,s

RS, d,hhhh Read sector hhhh Erom drive \(d\) to buffer WS, d, hhhh Write buffer to sector hhinh on drive \(d\) DB

FB , hhinh Display buffer in hex and ascii

The running test may be aborted by escape key
The next test of the sequence is entered by depressing spa key

Tests followed by letters " 1 p " move head between tracks show
Some tests require the appropriate alignment diskette and a that it be inserted. Other tests require a scratch discette a ask that it be inserted.

Typing OS<CR> will return the user to the operating syst (reboot).

\section*{COMPUTER MUSICAL INSTRUMENT}

MUSIC KEYBOARDS SERVICE MANUAL

Revision 1.0
July 1982
CMI music KEYBOARIS SERVICE mANUAL REvision 1. (1)

Eairlignt Instruments PLy Ltd
1. Introduction 1
1.l Operating Principles 2
2. Keyboard Dissassembly and Reassembly 3
2.1 Master Keydoard Disassembly 3
2.1.1 Removal of wooden cover 3 3
2.1.2 Removal of CMI-10 Keyboard Controller 3
2.1.3 Access to Keyboard Switch Mechanism 3
2.1.4 Removal of CMI-11 switch modules 4
2.1.5 Removal of Control Panel and Display/Reypad 4 4
2.2 Master Keyooard Reassembly 4
2.3 Slave Keyboard Disassembly and Reassembly 5
2.3.1 Removal of CMI-14 Slave Interface 5
3. Trouble Snooting 6
3.1 Failure of Master Keyboard to power-up 6
3.2 Individual Key Failure (Master and Slave) 6
3.3 Failure of Groups of Keys (Master and Slave) 7
3.4 Slave Keyboard Malfunctions 7
4. Master Keyboard Controller CMI-10 8
4.1 MPU, Decoding, RAM, and Restart 8
4.l.1 Microprocessor Unit 8 8
4.1.2 Address Decoding 10
4.1.3 Software Readable Switch 10 10
4.1.4 External RAM 11
4.2 ROMs and Peripherals 11 11
4.2.1 ROMS
4.2.1 ROMS
4.2.2 Serial Communications ACIAS 11
4.2.3 Peripheral Interface Adapters (PIAs) 12
4.3 Power Supplies and Analog Interface section 13 13
4.3.1 power Supplies
4.3.1 power Supplies 13
4.3.2 Threshold Detection
4.3.2 Threshold Detection 4.3.3 Control Signal Multiplexors and \(A / D\) Convertor 13
4.3.4 RS- 232 Interface 14
4.3.5 Lamp driver 14 14
4.3.6 Connections 14
4.4 Software Loop and Interrupt Routine 16
5. Keypoara Switen Module CMI-11 18

5 . 1 Keypoard Switcn Module Operation 18
5. 2 Externai Connections 18
6. Keypoard Display and Keypad Module CMI-12 19 6.1 Display and Keypad Operation 19
6.1.1 LED Dispiay 19
6.1. 2 Reypad . 19
6. 2 External Connections 19
7. Slave Keyooard Interface CMI-14. 20
7.1 Operation . 20
7.1.l Scanning and Buffering 20
7.1.2 power Supplies 20
7.2 External Connections 20
8. Sehematio

Music Keyboand Interfuce

9.1 CmI10 Musi Keyboard Contreller
9.2 cmIr 2 Display/Keypad Module
9.3 cmII Keyboard Switch Module.
9.4 CmI 4 Seyboard Switch Module.
- Overleng
\(\vee\)

12 Exploded Viens
12.1 Fixing Screws \(0 m \mathrm{COO} 4 \mathrm{C}\)
12.2 Keyboo domplete DMCOO4B
12.3 Keybconneddox jbemo pra wno.fdirlight.free.fr

\section*{i. Introduction}

The CMI nas provision for one Master keyboard and optionally, a Slave keyboard wnich operates in parallel with the Master. Tne CMI mainerame nas only one keyboard input port, to whicn is connected the Master keyboard. The Slave keypoard, Alpha-numeric keyooard, and otner attachments such as pedal concrols, all connect to the Master keyooard. Tne latter contains an intelligent communications interface whicn monitors all attacned devices and routes information from tnem througn the single cnannel to cne Cill.

In adaition to tne piano type music keypoard, tne Master keypoard provides tnree slider pot analogue controls and two switcn controls (one momentary on, tne otner on/ofi) witn lamp indicators wnose purpose may be defined by the user dy means of the CMI system software. A 12 cnaracter LED alpna-numeric display and 16 switcn keypad constitutes a simpie user incerface to the mainframe so tnat during a live performance operations sucn as loading voices may de performed directly from the Master keypoard.

The Slave keypoard serves only as an extra music keyboard and contains none of tne extra facilities of the Master keyboard.

Related Documents: The following drawings are eitner referced to directiy in this manual or will be of use in servicing tne CMI music keypoards -

Exploded diagrams DiMC004 Master Keyboard DMCOO4B Master Keyboard with cover DMC015 Keyooard switcnes subassemoly DMC005 Slave Keyooard

Drawing
Scnematic Diagrams MCOO4-Ol Master keyooard wiring
CMI 10-00 Master controller
to CMI 10-02
CMIII-0l Switcn module
CMI12-01 Display/keypad
CMIL4 Slave keyboard interface.

\subsection*{1.1 Operating Principies}

Control over ail keypoara Eunctions is centralised upon the CMI-10 Keypoard Controller whicn is located witnin the Master Keyooard. Keyooard scanning, of Doth master and slave keyooards, is accomplisned oy analogue multiplexing of tne voltages on all key switcnes. The key switcn mecnänism consists of two orass buss oars running tne full length of the keyboard which are supplied. witn +5 and -5 volts, and a delicate spring contact on each key which is aliowed to move between the two ouss bars as the key is pressed. By measuring the time it takes tne spring contact voltage to cnange from \(-5 V\) to \(+5 V\), the velocity witn which a key is pressed may de calculated.

The analogue muitiplexing is performed by the CMI-ll switch modules, eacn of which has provision for 24 or 25 spring contacts. Eacn module provides one analogue output wnich is the state of the contact currently addressed by the select lines from the controller, and each keyboard contains tnree modules. Six analogue comparators (tnree for the master and chree for the slave) on tne master controller receive tnese analogue signals and determine tne state of the currently addressed key.

The user keypad and off/on switches are scanned in the same way altnougn tne multiplexed states are read directly as a digital signal. of the three slider controls on the master

Tne wipers of tne three slider are similarly multiplexed keyboard and tnree piug-in pedal pots are siminter on the master keyboara controlier. A change detected in any analogue level read by this converter is reported to the CMI provided tnat change is greater tnan a certain tolerance set by a 6-pole DIL switch.

All information reflecting the state of the master ana slave keyooards, and attacned pedal controls plus characters received from the alpna-numeric keyooard are sent to the CMI tinrough a single serial communications cnannel. User information received from the CMI through the same link is displayed on tne LED display. The dispiay modules accept ASCII cnaracters directly from the keyooard controller.

At thls point tne tincee CMI-1l switcn modules may be viewed With the spring switch contacts gently stretched across the orass \(-j V\) buss bar ana engaged in tne plastic "keynole grips" extending from underneath eacn key. Eacn grip nas two keynoles: the spring contact snould always de engaged with the lower one (closest to tne underside of the key).

\subsection*{2.1.4 Removai of CMI-lJ switch modules (Refer to drawing DMC-015)}

The following steps snould De followed for eacn module to be removed:
(12) Remove the 10 way cable plug from its socket. CAUTION: This caole snould never be plugged or unplugged with tne keypoard power appiied or damage will result to the switch module circuitry.
(13) Using tweezers or fine pliers, gently grip each spring switch contact and stretch it just enough to release it from its keynole catcn. Tuck it down underneatn the lower brass buss supply par (-5V).
(14) Use a 6BA nut driver to remove the 9 nuts and star washers securing tne switch module to the underside of the key assembly.
(15) Unscrew the 3 screws wnich pass through the ouss bar support blocks to ene underside of the key assembly.
(16) Lift tne moaule off its supports.
2.1.5 Removal oí Control Panel and Display/Keypad (Refer to drawing DMC-004)
(17) Slide the keyooard forward again as in step 10 , and remove the rour screws numbered 31 and 32 on the left in drawing DMCOO4 for the control panel, and/or the corresponding screws on the right for the display/keypad.
(18) Lower the keyboard and remove the 20 way flat cable from the display/keypad or release from its cable clips the 10 way ribbon cable leading from the CMI-10 module to the control panel. This cable.is attached to the control panel.
(19) Lift the desired assembly out.

\subsection*{2.2 Master Keyboard Reassembly}

Reassemoly of tne Master keypoard is essentially a matter of reversing tne procedures of section 2.1. Care should be exercised while replacing the \(C M I-11\) switch modules not to damage the delicate spring switch contacts. Tighten the nine nuts and three buss bar support screws evenly to ensure tne moduie is not warped or distorted in any way and that the buss bars are not bent.
caused by a mechanical problem in the spring switch contact mecnanism. Remove the cover of the keyooard according to section 2.l.l and hinge the key assembly up as described in section 2.1.3.

Common causes of failure are damaged, loose or dirty spring contacts, or inadequate contact between the spring and the brass buss bars.
3.3 Failure of Groups of Keys (Master and Slave)

If all the 24 or 25 keys scanned by a particular switch module fail to operate then the fault lies either in that module (cnecx the voltages on both buss bars) or in the path from it to the analog key data muitiplexor in the keyooard controller (incuding the caple.) The source of such a fault may be isolated DY swapping around the flat cable connectors to the switch modules.

Failure of certain keys belonging to eacn module is most likely to be caused by incorrect scanning addresses arriving at the switch module: either a cable fault or an \(I / O\) problem on the keypoard controller. In this case it is unlikely that the keypad or display will work either.

If no such module-related pattern to the faulty keys exists,tnen the problem is mechanical. Check that all spring contacts bend across the \(-5 V\) buss bar by approx 20 degrees from the horizontal when the keys are released and across the +5 V bar by the same angle (in the opposite direction) when the keys are depressed. A tension spring in the back of each key returns it to the original position when it is released.

\subsection*{3.4 Siave Keyboard Malfunctions}
failure of groups of keys or individual keys on the slave keyboard can be diagnosed following the same guidelines as for the master keypoard. However two additional possible sources of faults exist: the cable from the master keyooard to the slave, and the CMI-14 slave interface. Since the slave scan address lines are the same as the master scan address lines, faults in the slave keyboard winch corrupt those lines can cause the master to malfunction. Section 7.1.l describes the use of the 4 -pole DIL switch on the CMI-14 to disable individual switch module outputs when isolating slave keyboard faults. Ensure that all switches are open to enable the full keyooard velocity sensing prior to reassembling the slave.

CAUTION: Always turn off \(C M I\) power to the master keyboard before connecting or disconnecting the external cable between the master and slave. Omission to do this will cause damage to the switch modules in the slave keyboard.
C.M.I. Music Keyooards Service Manual
4. Master Keyooard Controller CMI-10

The function of the CMI-10 Master Keyboard Controller card is to execute all keyooard facilities of the CMI and communicate the status of those facilities through a single serial link to the central processor. Tne facilities are -

Master keyboard scanning (with CMI-ll multiplexor).
Slave keydoard scanning (with CMI-14 slave interface and
CMI-1l multiplexor).
Data link to CMI for the alpha-numeric keyboard.
Master keyboard keypad
Keypad display of information from CMI
Three slider pots Two on/off switches
Three pedal controls with switches
This section describes the operation of the CMI-10.
4.1 MPU, Decoding, RAM, and Restart
(Refer to drawing CMIIO-00)

\subsection*{4.1.1 Microprocessor Unit}

The centrai driver of the Keyboard Controlier is the 6802 microprocessor unit (MPU) at location E567 which is activated by a 4 MHz crystal. At power-up the MPU reset line is held low for approx 0.4 seconds at wnich time it is released less than execution. It is important that this restart to ensure that no the CMI's Central processor restart interval lost. The MPU may characters sent to the Keyboard Controller are the heatsink). This also reset manually by depressing SWl (nearer collector NAND gates switch is debounced through the pair of open-collector NAND gates D12.

While the restart line is held low, the MPU places \(F F F E\) (hex) on the address buss and its first operation is to fetch the restart vector from locations FFFE/F. Execution. Successful transferred to the initialization routines in by the keyboard completion of this power up phase is ind second, off for another switch lamps switcning on for about one \({ }_{n}\) message is then written to the keypad display.

A 4-pole dual-in-ine (DIL) switch, SW3, is used to select the source of Non-Maskable Interrupts to the MPU. This may be either from the manual switch SW2 or a clocked timing signal. The DIL switch functions as follows:

\section*{C.M.I. Music Keypoards Service Manual}

Clear.ly, switcnes 1 and 2 are mutually exclusive and must not be closed simulataneously, as are switches 3 and 4. Before feeding to switcn 4, the nign frequency reference selected by switches 1 or 2 is divided by 512 , 1024,2048 or 4096 by the binary counter \(C 5\). This division ratio is determined by the p.c.b. link next to C5 (normally 2048). The divided reference (signal SCND) is used as a control line signal to the PIAs, in addition to optioning as an NMI source.

With "KBDIOA" and "VELKEYD" ROMs, switches 2 and 3 only snould be closed. This selects SW2 as NMI source, and has the same effect as restart SWl except that NMI vector \(F F F C / D\) is used. Switch l of the DIL switch is nearest the edge of the p.c.b. with the neatsink.

The 6802 MPU contains 128 bytes of internal RAM. This is permanently enaoled by tying the Ram Enable signal (pin 36) high.

\subsection*{4.1.2 Address Decoding}

Selection of all ROMS, external RAM and peripheral devices is performed by four LS 139 l-of-4 decoders in ICs El2 and E34. Addresses are decoded when both the \(\phi 2\) and VMA (Valid Memory Address) signals from the MPU are inigh.

The address map of the Keyboard Controller is as follows:

Address (Hex)
\(0-7 F\)
\(80-83\)
90-93
AO - Al
BO - Bl
CO
\(4000-43 F F\)
\(5000-53 F F\)
\(9000-9400\)
A000-A400
B000 - B400
FCOO - FFFF

Function
Internal RAM. 23 bytes only used, for software variable storage.

Active key input/AD conv. input pIA (K34) Key address output PIA (F34)

Alpha-numeric keyboard comms. ACIA (C67)
CMI communications ACIA (D67)
Software readable switcn
External RAM \#1 (L67, N67)
External RAM \#2 (K67, M67, not normally installed)

ROM \#l (J67, not normally installed)
ROM \#2 (HI67, not normally installed)
ROM \#3 (G67, "VELKEYD")
ROM \#4 (F67, "KBDIOA")

\subsection*{4.1.3 Software Readable Switch}

The six-pole dual-in-line (DIL) switcn SW4 provides adjustment to the sensitivity of the analogue controls. It is read wnenever an \(A / D\) conversion detects a cnanged analogue level. Bits 4 and 5 (switches 1 and 2, nearest the heatsink) are ignored and the 4 -bit number remaining gives the minimum change in the converted level required before the change will be reported to the CMI.

The switch is read through buffer N 8 whose inputs are pulled high, unless grounded by a closed switch. Thus a binary ' l' corresponds to an open switch.

Normally, sensitivity is set to 3 digital levels so switches 3 and 4 only are closed.

\subsection*{4.1.4 External RAM}

Provision is made on the CMI-10 p.c.b. for 2 K of static RAM but normally only 1 K is installed: 21145 L 67 and \(N 67\). Each chip contains \(1 \mathrm{~K} \times 4\) Dits storage. The upper nybole is stored in L 67 , and the lower nyoole in \(N 67\).
4.2 ROMs and Peripherals
(Refer to Drawing CMI 10-01)
4.2.1 ROMs

Provision is made on the CMI-10 printed circuit board for four 2708 ROMs. Normally only two of these are installed: "KBDIOA" at location F67, and "VELKEYD" at G67. The first ROM contains the initialization and \(I / O\) firmware for the Keyboard Controller and the second contains firmware responsible for scanning the velocity sensitive keypoard and analogue and switch controls.

\subsection*{4.2.2 Seriai Communcations ACIAs}

Serial communication with the Alpha-numeric keyboard is accomplished througn the 6850 Asynchronous Communications Interface Adaptor (ACIA) at C67, while communication with the CMI utilises the 6850 ACIA at D67. The Baud rate for Doth ACIAs is derived from the Baud rate generator at Bl2 driven by a 1.8432 MHz crystal and a p.c.b. link at Cl2 normally selects 9600 Baud operation (pin 1 of Bl2).

The Baud rate generator also provides the BRCK signal, normally linked to 1200 Baud at \(B 45\).

Both ACIAs are normally linked via LKl and LK2 to the common interrupt request (IRQ) buss signal. D67 generates IRQs when transmitting to and receiving from the CMI, while C67 generates IRQs when receiving from the Alpha-numeric keyooard.
C.M.I. Music Keyboards Service Manual
4.2.3 Peripheral Interface Adapters (PIAS)

Two PIAs are used, eacn containing two 8-bit parallel I/O ports and four control outputs/IRQ input lines. The PIAs are configured during initialization and used as follows:

\section*{PIA E34}

I/O port A PAO - PAI

CA1
CA 2
I/O port \(B\) PBO - PBl PB2 - PB7

CBI

CB 2

PIA K34
I/O port A

PAO - PA5

PA 6

PA 7

CAl

CA 2
I/O port B
PBO- PB7
I/O port B
PBO- PB 7

CBl

CB 2

Peripneral address outputs. Buffered through G23 to address to provide: CMI-11 switch module addresses
CMI-12 keypad mutiplexor addresses LED display module data
Data inputs to Elip-Elops (G4) which switcn control button lamps.
Analog control input multiplexor addresses.

Scan Not Done (SCND) timing flag input
Strobe output to update lamp flip-flops

LED display digit select lines
LED displ.ay all-segments-on (CU) and module select (CS) signals.

Input flag from keypad multiplexor. Does not generate IRQs.

Strobe output to update a LED display (\(\overline{\mathrm{DWS}}\))

Inputs from music key threshold comparators

Input from control switch multiplexor enabled by BKA7

Input from keypad multiplexor, also enabled by BKA7

Inverted timing reference input. Does not generate IRQs.

Threshold select output

Data inputs from \(A / D\) converter (\(A D C\)) \(\overline{\mathrm{DR}}\) (Data Ready) flag from \(A D C\)
\(B / \bar{C}\) (Begin Conversion) strobe to \(A D C\)
4.3 Power Supplies and Analog Interface Section
(Refer to drawing CMI-10-02)
4.3.1 Power supplies

The Keyboard Controlier receives \(+20 \mathrm{~V},-20 \mathrm{~V}\) and +10 V Erom the CMI through a 6-pin Utilux connector. Six on-board regulators are used to generate three independant +5 V supplies, in addition to \(+12 \mathrm{~V},-12 \mathrm{~V}\) and -5 V supplies. These power the controller itself plus the keypad display, slider and pedal pots and switches.

The supply designated " \(+5 V\) " powers all circuitry on drawings CMI-10-00 and CMIIO-10-01 except the ROMs, which are powered separately from " + RV". The anaiog multiplexors, \(A / D\) converter and RS-232 drivers on CMI-10-02 recieve power from " \(+X V^{\prime \prime}\) and where necessary, the \(-5 V\) suppiy.
" \(+X V\) " also leaves the controller board to power the CMI-11 keypoard switch multiplexors, and the keypad display.

\subsection*{4.3.2 Thresinold Detection}

MDI-3 and SDl-3 are tine multiplexed signals representing the position of music keys addressed by the three master keyboard CMI-11 modules and the slave keyboard interface CMI-l4, respectively. These signais are compared by the six MLM3lls to a known threshold to determine when a key begins to be pressed, and when it is fully depressed.

The THLD signal from PIA \(K 34\) sets up one of two thresholds through the \(7415 C\) level shifter. If THLD is low, a -2.7 V threshold is applied to the comparators. With THLD high, the threshold is +2.3 V .

Initially, THLD is low. An unpressed key rests against the 5 V buss bar so the corresponding comparator output will be high. When the key is first depressed and the spring contact leaves the \(-5 V\) buss oar, the output of the moduleswhen that key is selected is pulled to just below zero volts by a lok resistor to ground on the switch module and a look resistor to -5 V on each comparator input. This causes the comparator to change state to a low. The change is read from the PIA whereupon THLD is switched nigh to select the \(+2.3 V\) threshold, setting the comparator ingh again. It will return low when the key reaches the +5 V buss bar at its full depression. The time taken between the two falling edges of the comparator output is noted by the MPU, and this mechanism forms the basis of the velocity sensitive keyboard.

The key continues to be compared to the \(+2.3 v\) threshold until its release is detected.
4.3.3 Control Signal Multiplexors and \(A / D\) Convertor

User control signals enter the Keyboard Controller from several possible sources: two control panel sw<tches, three pedal switches, three control panel slider pots and three pedal pots. The switch controls are analogue multiplexed by H 3 and read directly as KD6 when gated by a high level on BKA7.
C.M.I. Music Keyboards Service Manual

The analogue controls (slider and pedal pots) are multiplexed by I3, buffered Dy \(741 S C\) I4, and ied to the AD570 A/D converter at J4. The low frequency signals used do not require a sample and hold. The converter is strobed to begin a conversion by the \(3 / \bar{C}\) signal from the CB2 output of PIA K34 and flags the end of conversion to CBl of the same PIA.

The sensitivity of the analogue controls may be set by DIL switch SW4. Refer to section 4.1.3 for further details.

\subsection*{4.3.4 RS-232 Interface}

ICs A5 and A6 are the RS-232 drivers for the two ACIAS described in section 4.2.2

\subsection*{4.3.5 Lamp driver}

The control panel lamps are supplied with 20 V and switched on when the MC75452 driver at \(J 2\) pulls the appropriate line to ground. Tne driver is activated \(D Y\) signals LPl and LP2 latcned from PIA F34.

\subsection*{4.3.6 Connections}

The Keyboard Controller requires four external connections as follows:

SOl 50 Way flat cable connector.
Pins \(1-5\) Master switch module 1 scan address
6 N/C
\(7-5 V\) to Master switch module 1
8 " 8 XV " 5 V to module 1
9 Ground to module 1
10 MDI module 1 multiplexed output
11-20 Master switch module 2 connections as for 1
21-30 Master switch module 3 connections as for 1
31-37 Scan address to keypad and data lines to
LED display
38 All segments on, display module 0 (CU)
39 Module select, module 0 (CS)
40-41 CU and CS lines, display module 1
42-43 CU and CS lines, display module 2
44-45 LED display digit select
46 Digit write strobe
47 Keypad multiplexed output
48 BKA3, selects keypad multiplexor 2
49. Ground to display/keypad
\(50{ }^{\prime \prime}+X V^{\prime \prime}+5 V\) to display/keypad

SO2 10 Way rainbow cable connector
Pins \(1-2\) Button lamps switched returns
3 Switcn 2 (momentary on)
4 Switch 1 (push on/push off)
5 Slider pot 3 wiper
\(6+20 V\) to lamps
\(7 \quad-5 \mathrm{~V}\) to pots
\(8 \quad\) " 8 XV" \(+5 V\) to pots
9 Slider pot 2 wiper
10 Slider pot 1 wiper

SO 3
26 way rainbow cable connector
\begin{tabular}{ll}
Pins & 1 \\
2 & Pedal 1 pot wiper \\
3 & Pedal 1 switch \\
4 & pedal 2 sot wiper \\
5 & Pedal 3 pot wiper \\
6 & pedal 3 switcn \\
\(7-11\) & Slave keypoard scan address \\
12 & Slave keyboard ground \\
\(13-15\) & Slave switch module outputs \\
16 & RTS flag to alpna-numeric keyboard \\
17 & CTS flag to A/N keyboard \\
18 & A/N keyboard ground \\
19 & Data to A/N keyboard \\
20 & Data from A/N keyboard \\
21 & Ground \\
22 & CTS flag from CMI \\
23 & RTS flag to CMI \\
24 & Ground \\
25 & Data from CMI \\
26 & Data to CMI
\end{tabular}

SO4 6 Way Utilux Connector
\begin{tabular}{lll}
Pin & 1 & \(+10 V\) \\
& 2 & \(+10 V\) \\
& \(+20 V\) \\
& 4 & \(-20 V\) \\
& & \\
& & Ground \\
& & \(+1-20 V\) \\
& &
\end{tabular}

\section*{C.M.I. Music Keydoards Service Manual}

Page 16
4.4 Software Loop and Interrupt Routine

A useful clue when fault finding ROM-based equipment such as the CMI-10 is the main software loop which the processor normally executes in the "steady state": that state which exists after a successful power-on initialisation, but before any special functions nave been called upon by key presses, cnanged A/D values, etc. This software loop may also be referred to as tine "idle loop". Knowledge of what happens in the idle loop allows a service person to establish, for example, what peripherals are not being regularly accessed as they should.

The program flow of the idle loop in "VELKEYD" is as follows:
begin loop

\section*{for keyselect \(=1\) to 32}
read key-pressed pattern from comparators
for module select \(=1\) to 6 (3 master, 3 slave)
update statuses in RAM of keys pressed
end Eor
end for
read one of the control functions and update status (slider pots, pedal pots and switches)
scan entire keypad for a keystroke
wait for rising edge of SCND flag
end loop
The key scan loop executes 32 times because there are 5 key select lines but there are only 24 or 25 keys on each module so some iterations of the inner loop do not correspond to any real key. A different control function is monitored and updated on each iteration of the main loop. A knowledge of the sources of interrupts and the functions performea in fault tracing in then fauce routine(s) can be similarly three possible sources of interrupts (IRQ's):
1. A character has been received from the CMI.
2. A cnaracter previously transmitted to the CMI has completed transmission from the ACIA.
3. A character has been received from the alpha-numeric keyboard.
Characters received Erom the CMI are written to the LED display immediately. A transmit-complete interrupt causes the processor to cneck the output character queue and send another character if it is not empty. A character received from the alpha-numeric keyboard is placed on the output character queue
unless the received character is actually a BREAK level, in winch case a BREAK level is transmitted to the CMI.

The short piece of code which places characters on the output queue (and enables the transmitter interrupt) is actually a software interrupt routine, called by the SWI instruction rather than a subroutine call.

\section*{5. Keypoard Switch Module CMI-11}

Three Keyboard Switcn Modules are installed in each master and slave keyboard used with a CMI. Each module provides a single signal out whicn represents the state (pressed, released, or in flignt) of one of the 24 or 25 keys addressed by the multiplexor inputs. This section describes the operation of the CMI-11.

\section*{5.l Keydoard Switcn Module Operation \\ (Refer to drawing CMI-11-01)}

Five key address bits are provided provided by the Keyboard Controller CMI-10 as inputs to the CMI-ll. The lower three of these are bussed across three 4051 analogue multiplexors (ICs 24) so that each 4051 selects one of eight spring key contacts as its analogue input. Normally, a key rests against a \(-5 V\) buss bar, but when fully depressed, it contacts \(a+5 \mathrm{~V}\) buss bar. In between, it contacts neither.

The outputs of ICs 2-4 are fed to another multiplexor, ICl, whose select inputs are the upper two bits of the key address. Thus the output of ICl may be any of the 24 key contacts accessed Dy ICs 2-4. It may alternatively be the 25 tn key contact which is fed directly to ICl as a fourth analogue input.

Eacn CMI keyboard has a total of 49 keys so the 25 th key is only used on the extreme rigit hand switch module. provision is made on the switch module p.c.b. for a lok resistor (Rl) pulling to ground. This is to ensure that if the 25 th key is not installed, it appears to the multiplexor as a key which is never pressed. However, the resistor must be removed if the 25 th key is installed or the velocity sensing mechanism will not work on that key.

The output of \(I C l\) is fed directly to the Keyboard Controller in a master keyboard or to the Slave Interface in a slave keyboard. Its unused inputs are grounded.

\subsection*{5.2 External Connections}

SOl 10 Way flat cable
Pins \(1-5\) Key scan address inputs
6 N/C
7 -5V supply
\(8+5 \mathrm{~V}\) supply
9 Ground
10 Multiplexed analogue output

\section*{6. Keyboard Display and Keypad Module CMI-12}

Tne Display and Keypad Module provides a simple user interface with the \(C M I\) from the master music keyboard. A 16switch keypad is scanned by the keyboard Controller for commands to be sent to the CMI and a 12 digit LED display receives simple messages from the CMI to the user. This section describes the operation of the CMI-12.

\subsection*{6.1 Display and Keypad Operation \\ (Refer to drawing CMI-12-01) \\ 6.1.1 LED Display}

The DL-1416 LED display modules, containing four digits each, accept 7 bit ascii codes from the data lines to display the desired character. The key scan addresses are used as data inputs. Data is latched into the modules whose chip select line \((\overline{C S})\) is low on the falling edge of \(\overline{D W S}\). The DA lines select which digit within the selected module(s) is written to. The \(\overline{C U}\) line is a test <nable line whicn causes every segment in each digit to light up.

\section*{6.1 .2 Keypad}

The keypad is simply an array of 16 momentary switches which connect to the common (+5 V) line when pressed. Two 4051 1-of- 8 analogue multiplexors scan the keypad. Their select and inhibit inputs are taken from the key scan address lines. Only enabling one multiplexor at a time allows the outputs to be wired together on the same KPAD signal.

\subsection*{6.2 External Connections}

SOl 20 Way Ribbon cable connector
```

Pins l-2 Digit select

```

3,5,7 Display module select
4,6,8 Display module test (all segments on)
10 Digit write strobe
9,18, Key scan address and data to display modules
11-16
17 Keypad multiplexed output
19 Ground
20 " + XV" \(^{n}+5 V\) supply
7. Slave Keyboard Interface CMI-14

The Slave Keyboard Interface provides regulated power supplies to the CMI-ll switch modules in a slave keyboara and buffers the analogue outputs of the switch modules before feeding them to the master keyboard controller. This section describes the operation of the CMI-14.

\subsection*{7.1 Operation \\ (Refer to drawing CMI-14) \\ 7.1.1 Scanning and Buffering}

The five slave key scan address lines from the master keyboard controlier are fed straight through to the CMI-ll switch modules. The output from each module is buffered by a 741SC in a non-inverting configuration and fed to the master controller. A 4-pole dual-in-Line (DIL) switch allows the input of each buffer to be pulled to nearly \(-5 V\) for testing purposes. In the event of a switch module being unplugged, closing the switch corresponding to that module simulates all keys released. Two or more floating buffer inputs result in the keyboard controller going into overflow due to sensing too many keys pressed. All switches should normally de open, otherwise the velocity sensing system will not work.

\subsection*{7.1.2 power Supplies}

The CMI-14 is supplied with +20 V and -20 V from the CMI via the master keypoard. A \(4 V 7\) zener is used on each supply side to provide \(+12 V\) and \(-12 V\) to the 741 buffers, and 7805 and 7905 refulators send +5 V and -5 V respectively to the switch multiplexors.

\subsection*{7.2 External Connections}

SO1 30 way flat cable connector to kuboand Sintah madeles. Pins \(1-5\) Slave switch module 1 scan address

6 N/C
\(7-5 V\) to Slave switcn module 1
\(8{ }^{-1+X V " 5 V}\) to module 1
9 Ground to module 1
10 MDl module 1 multiplexed output
11-20 Slave switch module 2 connections as for 1
21-30 Slave switch module 3 connections as for 1
 3-7 Slave keypoard scan addresses
 9-11 Slave multiplexor outputs
 12-21 N/C
 22-23 -20V supply
 \(24-25+20 V\) supply
)

Scanned by JB EMOND - www.fairlight.free.fr

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline M & \multicolumn{2}{|l|}{deSCRIPTIO} & neod & mateaial & \multicolumn{2}{|l|}{Remanks} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
FAIRLGHT INSRUMENTS P/L
\end{tabular}}} & gCal & & PASSED & Date \\
\hline & & & & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{OVERLAY FOR CMI-14}} & drawn & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{DFAWNGE NUR CMI-14-C}} \\
\hline & & & traceo & BPL & & \\
\hline RE & & & CTECKEO & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{CMI 14} & \\
\hline & \multicolumn{5}{|c|}{SLAVE K/BD INTERFACE CARD} \\
\hline LOC. & TYPE & DESCRIPTION & LOC. & TYPE & DESCRIPTION \\
\hline IC1-3 & \(7415 C\) & OP AMP & REG 1 & 7805 & 5 V \\
\hline 2D1,2 & 4 V 7 & & REG2 & 7905 & -5V \\
\hline SO1 & 25 WAY & D TYPE & SO2 & 30 WAY & HEADER \\
\hline & \multicolumn{2}{|l|}{RESISTORS} & & \multicolumn{2}{|l|}{CAPACITORS} \\
\hline R1 & \multicolumn{2}{|l|}{1K} & C1 & \multicolumn{2}{|l|}{100 N} \\
\hline R2 & \multicolumn{2}{|l|}{4K7} & C2 & \multicolumn{2}{|l|}{100UF} \\
\hline R3 & \multicolumn{2}{|l|}{1K} & C3,4 & \multicolumn{2}{|l|}{100N} \\
\hline R4 & \multicolumn{2}{|l|}{4K7} & C5 & \multicolumn{2}{|l|}{100UF} \\
\hline R5 & \multicolumn{2}{|l|}{1K} & C6-8 & \multicolumn{2}{|l|}{100N} \\
\hline R6 & \multicolumn{2}{|l|}{4K7} & & & \\
\hline
\end{tabular}

Scanned by JB EMOND - www.fairlight.free.fr

MASTER MUSIC KEYBOARD COMPLETE
\begin{tabular}{lcl}
DRAWING REF.DMCOO4B & \\
REF.NO & PART NO & DESCRIPTION
\end{tabular} REMARKS.
\begin{tabular}{|c|c|c|c|}
\hline REF.NO & PART NO & DESCRIPTION & REMARKS. \\
\hline 01 & G0027 & PANEL MUSIC K/BD BASE & \\
\hline 02 & MC015 & KEYBOARD MECHAISM ASSY & \\
\hline 03 & G0023 & CHEEK LH MASTER & \\
\hline 04 & G5406 & BEZEL WHITE & \\
\hline 05 & G5407 & LAMP & \\
\hline 06 & G5404 & SWITCH \#1 & \\
\hline 07 & G5405 & SWITCH \#\# & \\
\hline 08 & G5146 & KNOB SLIDER POT & \\
\hline 09 & GO105 & STRIP CLAMP MUSIC K/BD & \\
\hline 10 & HO211 & NUT SWITCH & \\
\hline 11 & G0024 & STRIP SLIDER POT & \\
\hline 12 & G5161 & POT SLIDER & \\
\hline 13 & G0025 & CHEEX RH MASTER & \\
\hline 14 & G5165 & BEZEL DISPLAY RED & \\
\hline 15 & MCMI 12 & CARD MUSIC DISPLAY & \\
\hline 16 & G5142 & SPACER 6BAX \(1 / 4^{\prime \prime}\) ROUND & \\
\hline 17 & D6738 & CONNECTOR CANNON 7P & \\
\hline 18 & D6710 & CONNECTOR CANNON 5S & \\
\hline 19 & D6729 & CONNECTOR DMINI 25S & \\
\hline 20 & D6727 & CONNECTOR DMINI 9S & \\
\hline 21 & D6728 & CONNECTTOR DMINI 9P & \\
\hline 22 & G5122 & CLIP CABLE & \\
\hline 23 & D6731 & LUG DMINI & \\
\hline 24 & MCMI 10 & CARD C.M.I-10 & \\
\hline 25 & G5219 & CONNECTOR UTH9356-6R & \\
\hline 26 & MC070 & CABLE SLIDER POT ASSY & \\
\hline 27 & MC063 & CABLE KEYBOARD ASSY & \\
\hline 28 & MC071 & CABLE REAR PANEL & \\
\hline 29 & G5 107 & STANDOFF & \\
\hline 30 & H0125 & SCREW 6CiX \(1 / 4^{\prime \prime} \mathrm{CHD}\) & \\
\hline 31 & HO124 & SCREW 6BAX \(1 / 4{ }^{\prime \prime}\) CHD & \\
\hline 32 & H0117 & SCREW 6EAX \(1 / 4{ }^{\circ} \mathrm{CSK}\) & \\
\hline 33 & HO130 & SCREW 6EAX3/16" CSK & \\
\hline 34 & H0012 & WASHER 6BA STAR & \\
\hline 35 & H0201 & NUT 6BA HEX & \\
\hline 36 & G5183 & FOOT RUBBER & \\
\hline 37 & H0112 & SCREW 4BAX \(3 / 8^{\prime \prime} \mathrm{CHD}\) & \\
\hline 38 & H0008 & WASHER 4BA STAR & \\
\hline
\end{tabular}
```

MUSIC KEYBOARD SUB-ASSEMBLY
DRAWING REF.DMCO15

| REF.NO | PART NO | DESCRIPTION |
| :--- | :--- | :--- |
|  |  | REMARKS. |
| 01 | G5156 | KEYBOARD MUSIC 73 KEYS |
| 02 | G5154 | BRACKET A/N/ K/BD MTG |
| 03 | G5153 | BAR PLATED |
| 04 | G5187 | RETAINER SPRING MUSIC K/BD |
| 05 | G5158 | SPRING KEYBOARD MUSIC |
| 06 | MCM11A | CARD K/BD MUSIC 24SW |
| 07 | MCM11B | CARD K/BD MUSIC 25SW |
| 08 | HO122 | SCREW 6BAX3/4" CHD |
| 09 | HOO12 | WASHER STAR 6BA |
| 10 | HO201 | NUT 6BA HEX |

```

SLAVE MUSIC KEYBOARD ASSEMBLY
DRAWING REF.DMC005
REF.NO PART NO DESCRIPTION
REMARKS.
01 GOO30 COVER MUSIC SLAVE WOOD BEIGE
02 G0029 PANEL MUSIC SLAVE BASE BEIGE
03 G5156 KEYBOARD MUSIC 73 KEYS
04 GO105 STRIP CLAMP MUSIC R/BD.
05 GOOO2 CHEEK SLAVE LH B/K
06 GOOO3 CHEEK SLAVE RH B/K
07 MCO14 SLAVE KEYBOARD INTERFACE CARD
08 MCO19 CABLE MUSIC SLAVE K/BD INTERNAL
09
10
11
 G5183 FOOT RUBBER
 G5122 CLIP CABLE:
 HO122 SCREW 6BAX3/4' CHD
 H0117 SCREW 6BAX1/4" CSK
 H0124 SCREW 6BAX1/4" CHD
 H0112 SCREW 4BAX3/8" CHD
 H0114 SCREN SELF TAPPER NO6X1/2" SLOTTED PAN HEAD
 HOO12 WASHER 6BA STAR
 H0007 WASHER 4BA FLAT

```

    SERVICEMANUAL
    for
    GAIRLIGHT
    ALPHA/NLMERIC KEYBOARD {隹COO3
JUNE 1982.
REVISION

```
1.INTRODUCTION 1
2.SPECIFICATIONS 2
3.FUNCTIONAL DESCRIPTION 3-6
3.1 MPU Decoding, RAM,Restart, Interrupt clock and Option switch 3-5
3.1.1 Microprocessor unit 3
3.1.2 Address decoding 3
3.1.3 Software readable switch 3
3.1.4 DIL switch selection 4
3.1.5 Interrupt clock 5
3.2 PIA, Voltage Regulation, Clicker and RS-232 signal 5-6
3.2.1 Parallel Interface Adaptor PIA 5
3.2.2 Voltage Regulation 5
3.2.3 Clicker 6
3.3 Keyboard opertion 6
4.DISASSEMBLY 7-8
4.1 Bottom Cover Removal 7
4.2 Cable Removal 7
4.3 Card Removal 7
4.4 EPROM Upgrade 7
4.5 Spitch Module Removal 7
5.SCHEMATICS 9-11
5.1 IKB1-01 Intelligent Keyboard Unit "Processor (ROM) Option." 9
5.2 IKB1-02 Intelligent Keyboard Unit, "Data Ports \& Misc. Logic." 10
5.3 IKB1-03 Intelligent Keyboard Unit, "Switch Array" 11
6.CIRCUIT OVERLAY
6.1 QIKB1 Intelligent Keyboard Card 12
7.ELECTRICAL PARTS LIST 13-14
7.1 QIKB1 Intelligent Keyboard Card 13
8.EXPLODED VIEWS 15-16
8.1 DMKB2 Alpha-Numeric Keyboard Module 15
8.2 DMCOO3 Alpha-Numeric Keyboard Assembly. 16
9.MECHANICAL PARTS LIST 17
9.1 DMKB1 Alpha-Numeric Keyboard Module 17
9.2 DMCOO3 Alpha-numeric Keyboard Assembly. 17
10.SIGNAL LIST 18
10.1 Power/Signal Cable \(\# M C 013\) 18

\section*{1.INTRODUCTION.}

The FAIRLIGHT Intelligent Alpha-Numeric Keyboard has been designed to be used as the primary input console for the fairlight range of microcomputers. It has 64 keys, which include all the usual 'typewriter'functions plus cursor control keys.

It is a completely self-contained unit using a microprocessor for maximum flexibility and adaptability for custom applications. By changing the 2708 EPROM in the keyboard, any special key function can be programmed.

High-reliability Hall-Effect switches are used which means no contact wear. The keytops are of a 'doubleshot'moulded type, giving permanent keytop legends which will not wear away.

Connection between the keyboard and the computer is made via a 7 -core cable. This cable provides power to the keyboard plus the serial link between the two devices.
2.SPECIFICATIONS.
\begin{tabular}{ll}
Switch Module Type: & Hall-Effect(no contact wear) \\
Total ket travel: & 4.1 mm \\
Key actuating force: & 71 grams \\
Reliability: & \(100,000,000\) opertions/station \\
Keytop type: & Double-shot moulded \\
Data format: & RS-232C ASCII format \\
Baud rate: & 110 to 9600. Factory set to 9600 \\
Power requirements: & +16 to 18 volts at 500 mA \\
& -16 to 18 volts at 100 mA \\
Connector type: & 9 pin \(1 D \mathrm{Mini}\) socket \\
Dimensions: & \(415 \mathrm{~mm}(W) \times 75 \mathrm{~mm}(H) \times 170 \mathrm{~mm}(\mathrm{D})\) \\
Weight:
\end{tabular}
3.1 MPU, Decoding,RAM,Restart, Interupt clock and Option switches, (refer to drawing IKBi-01).
3.1.1 Microprocessor Unit.

All keyooard functions are performed by the 6802 microprocessor unit (MPU) at location D2. This is activated by the 3.840 MHz crystal which results in a MPU cycle time of 1.04 microseconds. At power-up the MPU-is held reset by the 555 IC at location H 2 , to satisfy the 6802's reset requirements. After reset the MPU obtains its restart vector from ROM 2 at location C1 and starts program execution.

The 6802 MPU contains 128 bytes of internal RAM. This is permanently enabled by tying the Ram Enable signal(pin 36) high. This is the only RaM in the keyboard.
3.1.2 Address Decoding.

Selection of both ROMs, the Option switch and the PIA is performed by the LS 139 1-of-4 decoders at location B1. The devices are selected when the devices' address(s) is on the address bus and both VMA and E are active (high). Not all address lines are used in the decoding so the devices appear in several places in the 6802's address space. See the following address map.

The address map of the keyboard is as follows:
\begin{tabular}{ll}
Address (Hex) & Function \\
\(4000-7 F F F\) & Option switch \\
\(8000-\) BFFF & PIA \\
C800-CBFF & ROM 1 (optional) \\
CCOO-FFFF & ROM 2
\end{tabular}

Restart and other vectors must be stored in the last locations of ROM 2.
3.1.3 Software Readable Switch

The six-pole dual-in-line (DIL) switch provides for the selection of baud rate and parity, as follows :-

O refers to switch on (closed).
1 refers to switch off (open).

not
used

I-----I
parity
3.1.4 DIL Switch selection

\section*{Speed selection (baud)}

The standard switch setting is:
12345
on on on on off
3.1.5 Interrupt Clock

The 6802's E output is divided by 100 by the dual CMOS counter 4518 at location \(A 2\) to provide a 9.6 kHz interrupt source. This clock is connected to the PIA's CAI pin which in turn is programmed to generate an interupt to the MPU. This is used by the software in determining the serial output baud rate.
3.2 PIA, Voltage Regulation, Clicker and RS-232 signal generation. (refer to drawing \#IKB1-02).
3.2.1 Parallel Interface Adapator (PIA).

The two 8 bit ports in the PIA at location D1 are used to scan the keyswitch matrix. The remaining lines are used to generate RS-232 controls and the data line. The ports and control line functions are as follows:-
\begin{tabular}{ll}
Port A & input, from keyswitch colums \\
Port 3 & output, to keyswitch rows \\
CA1 & input, recieves 9.6 kHz clock \\
CA2 & output,CTS flag \\
CB1 & input,RTS flag \\
CB2 & output, keyboard data
\end{tabular}
3.2.2 Voltage Regulation.

The keyboard recieves \(+/-20\) volts from the main computer's power supply along the same cable as the keyboard's data signals. These voltages are regulated to -\(12,-5,+12\) and +5 by the three terminal regulators in locations VR1,VR2,VR3 and VR4 on the heat sink along the edge of the PCB respectively. A 10 onm 5 watt resistor is in series with the +20 volts and the \(7812+12\) volt regulator to reduce the power dissipation in the regulator.
3.2.3 Clicker.

The audible feed back in the keyboard is provided by a relay driven by a discret monostable. The monostable is triggered by any serial output data. This monostable is configered around the CMOS 4001 at location \(G 2\) and capacitors \(C 15,16\) and resistors R6,7 . A LED is conected across the relay and flashes when the relay is activated.
3.2.4 RS-232 Levels.

The TTL signal outputs are converted to RS-232 levels by the driver in location H 1 and inputs are converted to TTL by attenuators feeding LS 14 inverters in location F 1.
3.3 Keyboard operation.

The keyboard is scanned by the MPU by setting successive rows to "1" using the PIA, and seeing if any columns go to "O". Each key has a unique row and column number thus allowing the MPU to access each of the 64 keys individualy.

The HALL EFFECT keyswitches do not "bounce", so repetitive reads of a depressed key do not have to be made to distinguish if a key is pressed or released. The keyboard scanning is the main program loop. When keys are found depressed and later released, their state is noted in a 64 bit 'key state' table and the appropriate ASCII code is looked up, taking into account any other simultaneous depression of keys (such as shift or control). The character to be sent is put in a queue. One key can be handled each scan.

The characters in this queue are then outputted, one bit at a time in the interrupt routine. The transmission rate is determined by the setting of the option switch and the 9.6 kHz interrupt clock. This results in N key roll-over.
4.1. Bottom Cover Removal.
1. Disconnect the Power/Signal cable from the computer before proceding.
2. Place keyboard face down on smooth surface.
3. Using 'locking type' bladed screwdriver, through the 4 screws from the base cover. Access
4. Lift off the cover and slide the cord grip out from the bottom cover cut-out.
4.2.Cable Removal.
1. Remove bottom cover as in 4.1.
2.Spread cord grip open to release cable.
3.Remove the cable from the Printed Circuit Card by spreading the connector locking lugs apart.
4.3.Printed Circuit Card Removal. 1. Remove bottom cover as in 4.1. 2.Leave keyboard laying face down, remove the 2 hexagon nuts and locking washers both both ends of the card.
3. Lift out the card from the top cover.

\subsection*{4.4.EPROM upgrade.}
1. Remove the ?rinted Circuit Card as in 4.3.
2.Place the card down on a flat surface with the keytops facing upwards.
3. Locate the \(\Xi P R O M\) near the heatsink bracket, refer to exploded view drawing \#DMKB2.
4. NOTE THE POSIIION OF PIN 1 ON THE EPROM 'NITH RESPECT TO ITS SOCKET BEFORE REMOVING THE EPROM. Carefully lift out the EPROM from its socket.
5.To replace the EPROM, position its pins over its socket *NOTE POSITION OF PIN 1 BEFORE INSERTING* and pushdown on the EPROM until its bottom is sitting flat on its socket.
4.5. Keyswitch Module Removal.
1. Remove the bottom cover as in 4.1.
2. Remove the keytop from the module being replaced and as many adjacent buttons as required to allow adequate workingspace. The keytop can be removed by pulling or prying upward with a padded tool from their under side. FAIRLIGHT INSTRUMENT recommends to use the 'Keytop Puller'tool, (Part \#SW-10485). Refer to figure 1.
3.Unsolder the 4 terminals of the lead frame package from the \(P C B\) using a temperature contorlled soldering iron set to 750 degrees. Use a solder removal tool to remvove all the solder from the pin hole in the PCB. Refer to figure 2.
4. Insert the Module Removal 'tool, (Part \#SD-10101)at each end of the module.With the Module Removal tools in position, grip the switch module with a pair of pliers and pull straight out. Refer to figure 4. 5. Replace the module with same part number type as the one being replaced.

Figure 1. Butcon Removal
(guta

Eigure 2.

Unsoldering Terminals

Seannect by JBEMOND-www.fairight.free.fr

7.1 IKB1. Alpha/Numeric Intelligent Keyboard Card.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Circuit } \\
\text { Ref. }
\end{gathered}
\]} & Type & Description & \[
\begin{gathered}
\text { Circuit } \\
\text { Ref. }
\end{gathered}
\] & Type & Description \\
\hline & \multicolumn{5}{|c|}{IC'S} \\
\hline A2 & 4518 & DUAL COUNT. & E2 & 4503 & HEX TRI. BUFFER \\
\hline B1 & LS 139 & DUAL DECODER & F? & LS 14 & HEX SCH.INVERT \\
\hline B2 & LSOO & QUAD NAND & & & \\
\hline & & & G 1 & 4069 & HEX INVERT. \\
\hline C1 & 2708 & 1 K EPROM & G2 & 4001 & QUAD NOR \\
\hline D1 & 6821 & PIA & H 1 & 1488 & QUAD DRIVER \\
\hline D2 & 6802 & PROCESSOR & H2 & 555 & TIMER \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
VR1 & 7912 & \(-12 V\) & REG. \\
VR2 & 7905 & \(-5 V\) & REG. \\
VR3 & 7812 & \(12 V\) & REG. \\
VR4 & 7805 & \(5 V\) & REG.
\end{tabular}

\section*{TRANSISTORS}

Q1 BC108 TRANSISTOR
DIODES
D1 1 N4401 DIODE
D2 LED RED 3mm

\section*{RESISTORS}
\begin{tabular}{lllll}
R1 & 10R & 5 WATT & R11 & 1 K 5 \\
R2 & \(6 K 8\) & & \(R 12-17\) & 10 K \\
R3 & \(4 K 7\) & & \(R 18,19\) & \(3 K 3\) \\
R4 & \(6 K 8\) & & \(R 20\) & 10 K \\
R5 & \(4 K 7\) & & \(R 21\) & \(1 M\) \\
R6,7 & 47 K & & \(R 22\) & 100 R \\
R8 & \(4 K 7\) & & \(R 23\) & \(1 M\) \\
R9 & \(2 K 2\) & & \(R 24\) & \(4 K 7\) \\
R10 & \(4 K 7\) & & \(R 25\) & 10 K
\end{tabular}

Scanned by JB EMOND - www.fairlight.free.fr

9.1 DMKB2 Alpha/Numeric Keyboard Module.

Drawing ref. Part \(\mathbb{\#}\). Description.
\begin{tabular}{lll}
1 & G1046 & Heatsink \\
2 & EQKB1 & PCB \\
3 & G0042 & Switch Module 4B3S \\
4 & G4008 & Support Module SD 10438 \\
5 & G4009 & Tension bar \\
6 & G0061 & Felt pad \\
7 & G4006 & Switch Module 6A1D \\
8 & G4005 & Switch Module 4A1S \\
9 & G4004 & Switch Module 6B1D \\
10 & G4003 & Switch Module 4B1S \\
11 & H0123 & Screw 6BAx1" CHD \\
12 & H0201 & Nut 6BA Hex. \\
13 & H0110 & Screw 4BAx1/4" nylon \\
14 & H0202 & Nut 4BA Hex. \\
15 & H0002 & Washer Mica TO220
\end{tabular}

\subsection*{9.2 DMC003 Alpha-Numeric Keyboard Assembly.}
\begin{tabular}{lll}
1 & G1049 & Bottom cover \\
2 & MQKB1 & Card assembly \\
3 & G1017 & Top cover \\
4 & MCO13 & Cable assembly \\
5. & D6753 & Cover assembly D-Mini \\
6 & D6021 & Connector shell 10Way \\
7 & G5215 & Cord grip \\
8 & G1048 & Spacer \\
9 & H0112 & Screw 4BAx3/8" CHD. \\
10 & H0008 & Washer 4BA Star \\
11 & H0202 & Nut 4BA Hex. \\
12 & D6753 & Connector 9 pin D-Mini \\
13 & G5180 & Rubber foot
\end{tabular}
1. SAFETY WARNINGS 1
1.1 Picture Tube Handing 1
2. SPECIFICATIONS 3
3. INTRODUCTION 4
4. BLOCR DIAGRAM 5
5. CIRCUIT ADJUSTMENTS 6-7
5.1 Preliminary set-up 6
5.2 Power Supply Card VDU03 6
5.2.1 244 Adjustment 6
5.3 Main Card VDUO1 6
5.3.1 Horizontal Frequency 6
5.3.2 Horizontal Phase 6
5.3.3 Width 6
5.3.4 H. Linearity 6
5.3.5 Vertical Frequency 6
5.3.6 Vertical Height and Linearity 7
5.3 .7 Focus 7
5.4 CRT Card VDUO2 7
5.4.1 Black Level 7
6. DISASSEMBLY 8
6.1 Top cover removal 8
6.2 Picture tube removal 8
7. LIGHT PEN 9-10
7.1 General description 9
7.2 Light ?en adjustment 9
7.2.1 Sensitivity 9
7.3 Operation Check 9
7.4 Removal and replacement 9
7.4.1 Removal 9
7.4.2 Replacement 10
8. POWER SUPPLY UNIT 11
8.1 General description 11
8.2 Power Supply Card VDOO3 11
8.2.1 Circuit Description 11
FAIRLIGHT Graphics Monitor - Service
9. MAIN CIRCUIT CARD VDUO1 12-15
9.1 General description 12
9.2 Circuit description 12
9.2.1 Video Preamplifier 12 12
9.2.2 D.C. Restoration 12
9.2.3 Blanking 12
9.2.4 Sync Seperator and horizonta 12
9.2.5 Horizontal driver 13
9.2.6 Horizontal Output-Stage 13
9.2.7 Picture tube Supplies 14 14 14 14
9.2.8 Dynamic focus
9.2.8 Dynamic focus
9.2.9 Vertical timebase 15
10. CRT CARD VDUO2 15
10.1 General description 15
10.1.1 Video Output Stage 1516-17
11. SCHEMATIC DIAGRAMS
16
16
11.1 Main Card and CRT Card VDUO1,VDUO2
11.1 Main Card and CRT Card VDUO1,VDUO2
17
17
11.2 Power Supply Card VDUO3
11.2 Power Supply Card VDUO318-19
12. CIRCUIT BOARD OVERLAYS 18
12.1 VDUO1 Main Circuit Card 19
12.2 VDU02 CRT Card 19
12.3 VDU03 Power Supply Card.20-26
13. ELECTRICAL PARTS LISTS
20
20
13.1 VDUO1 Main Circuit Card
25
25
13.2 YDU02 CRT Card 26
13.3 VDU03 ?ower Supply Card.
14. WIRING DIAGRAM 27
15. EXPLODED VIENS 28-29
15.1 MQ215L/01 Graphics Monitor Internal yiew... 28 15.2 MQ215L/02 Graphics Monitor External view. 29
16. MECHANICAL PARTS LIST 30-31
16. 1 MQ215L/O1 Graphics Monitor Internal view. 30
16.2 MQ215L/02 Graphics Monitor External view. 31

\section*{1.SAFETY WARNING}

CAUTION: Unqualified persons should not attempt repair or adjustment to this equipment. High voltages present inside the unit.
1.1 Picture tube handling

A large amount of mechanical potential energy is stored in the picture tube by virtue of its vacuum.

The strength of the glass envelope will be impaired by surface damage, such as soratches or bruises (localised surface cracks caused by impact). When a tube is not in its equipment or original packing, it should be placed faceplate downwards on a pad of suitable riboed material which is kept free from abrasive substances. Stress on the neck of the tube must be avoided. Handle by the following methods:-
A) Tuoe on one edje from the edge down position, one hand To lift a tube from parabola section of the cone and the should seplaced around the placed near (sligntly below) the centre of other nand sho<ld be placed near (slightly below) the centre the faceplate \(3 s\) shown in Eigure 1. UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE NECR
3) Sibe face-down

To lift \(a\) tube from the face-down position, the hands should be placed under the areas of faceplate close to the fixing lugs at diagonally opposite corners of the faceplate as shown in Eigure 2. The Jube gust not be lifted from this position by the lugs themselves.
UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE NECK OF THE TjJE.
C) Tube Eace-up

To lift \(a\) tube from the face-up position, the hands should be placed under the areas of cone close to the fixing lugs at diagonally opposite corners of the cone as shown in Figure 3 . The tube must not be lifted from this position by the lugs themselves.UNDER NO CIRCUMSTANCES SHOULD ANY FORCE BE APPLIED TO THE VECK OF THE TUBE.

If the handling procedures for the tube prior to insertion in the chassis is such that there is a risk of personal injury as a consequence of accidental damage to the tube, then it is recomended that protective clothing should be worn particularly eye shielding.

Fig. 1 - Lifting picture iube 'rom sdgedown position

Fig. 2 - Lifting picture tuoe :rom '3ce-down gosition

F:g.3-Lifting picture rube from face-up position

Attention is called to the fact that high voltage may be carried by the internal conductive coating which is connected to the final anode connector and also by the external coating if not earthed, even after the tube has been removed from the unit. Discharge picture tube by shorting the anode connection to chassis ground (not cabinet or other mounting parts).
\begin{tabular}{|c|c|}
\hline ?icture tuoe type: & 15inch P31 green phospher with anti-reflective bonded face-plate. 110 degree deflection angle. \\
\hline Video Resporse(Typical): & 5 Hz to \(20 \mathrm{MHz}(-3 \mathrm{db})\) \\
\hline Video output risetime(Typical): & 30 V in 18ns \\
\hline Horizontal Linearity: & better than 3 \% \\
\hline Field Linearity: & better tian 1.5\% \\
\hline Geometric rasterdistortion: & with 1\% \\
\hline Scanning frequercy: & ```
Horizontal: 15,625Hz
Vertical:50%z
``` \\
\hline Horizontal Flyback time: & 10.5us \\
\hline Gorizontal blanking time: & 10.5 us \\
\hline Field blanking time: & 800us \\
\hline Anode voltage (eht): & 17 KV at zero beam current \\
\hline Input Siznal: & 1V pk-pk composite video (negative sync) 750nms \\
\hline \multicolumn{2}{|l|}{Controls:-} \\
\hline External: & a)Contrast, Brightness \\
\hline Internal: & a)H.frequency, H.phase Dynamic focus, width \& H. linearity. \\
\hline & b)V.frequency, height \& V. linearity. \\
\hline & c) Video black level. \\
\hline & d)24V supply adjust. \\
\hline Power Requiements: & \[
\begin{aligned}
& 100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V} \\
& -5 \%+10 \% 50 \mathrm{~Hz}-60 \mathrm{~Hz}
\end{aligned}
\] \\
\hline Power Corsumptions: & 35W (nominal) \\
\hline Dimensions: & \[
\begin{aligned}
& 490 \mathrm{~mm}(\mathrm{~N}) \times 345 \mathrm{~mm}(\mathrm{H}) \\
& \times 380 \mathrm{~mm}(\mathrm{D})
\end{aligned}
\] \\
\hline 'reight: & 30 kg \\
\hline
\end{tabular}
3. INTRODUCTION.

The FAIRLICHT Graphics Monitor is a high resolution CRT monitor for use with the Fairlight range of microcomputers. It is designed to accept composite video from the Graphics card located in the microcomputer.

The display tube is a high-resolution \(15^{\prime \prime}\) diagonal 331 type which gives a crisp, green image. The large format results in a highly readable display, which means low operator fatigue.

An optional high-performance light pen is used with the monitor. The lightpen is used for inputting graphical data, selecting options from a menu or cursor positioning in wordprocessing.

The lightpen is of high quality metal construction for a pleasant "feel". Connection to the monitor is by mears of a flexible spiral retractable cord and miniature connector.

When the pen is pointed at the screen, a oright cursor is displayed to show the exact point it is 'seeing'. The pen is activated by touching the end with a finger, at which time a T.T.L. 'Touch' signal is sent to the computer.

A single cable, containing 3 co-ax cabl, makes the siznal connection between the monitor and computer. It carries the video information from the computer plus the Light Pen HIT and TOUCH signals back to the computer.Mains power for the monitor is supplied via the computer, to allow the mains keyswitch to turn both Monitor and computer on and off together.

A block diagram of the Craphics Monitor is shown on Page 5 .

```

5.1. Preliminary set-up.

1. Check that mains selector on rear of Graphics Monitor is selected to suit local mains voltage.
2. Apply iv pk-pk composite video signal.
3. Connect mains supply.
4. Adjust contrast and brightness controls for optimum picture.
```
5.2 Power Supply Card (VDUO3)
5.2.1 24 V adjust.
1. Connect a voltmeter to pins 3 and 1 on conrector ?9 on the power supply card VDUO3.
2. Check output is +244 DC.
3.Adjust using RV1, if necessary.
5.3 Main Card (YDUO1)
5.3.1 Horizontal Frequency.
1. Short point 'fo' (refer to circuit diagram) to ground.
2.Adjust \(H\). freq control VR3 for near stable picture.
3.Remove shorting strap from 'fo'.
3.3 .2 H. ?hase.
1. Increase orightness control until picture background can be seen.
2.Adjust \(H\). Phase control VR4 to centre picture horizontally within background raster.
5.3.3 Width.
1.Adjust Width Coil 44 to obtain approx. 15 map betireen raster and edge of screen at the vertical centres.
5.3.4 H. Linearity.
1.Adjust \(H\). Lin coil. L2 to obtain optimum horizontal linearity at the start and end of the horizontal scan.
2. Readjust Width Coil Li if necessary.

\subsection*{5.3.5 Vertical Frequency.}
1.Turn \(V\). Frequency control VR5 until picture starts rolling down the screen and the blanking bar is seen.
2. Slowly turn VR5 back so that bar rolls up and locks in. 3. Turn VR5 a few more degrees to ensure stable locking.
```

 5.3.6 Vertical Height & Linearity.
 1.Increase picture brightness until background raster can
 be seen.
2.Turn V. Height control VR7 until there is approxinately
15mm gap between raster and edge of the screen at the horizontal
centres.
3.Adjust V. Lin control VR6 for optimum vertical linearity
at the top and bottom portions of the picture.
4.Repeat step 2. if necessary.
5.3.7 Eocus Adjustment:
1.Adjust contrast and brightness controls for optimum
picture.
2.Adjust Eocus control. VR9 for optimum picture focus.
5.4 CRT Card VDUO2.
5.4.1 3lack Level
1.Turn contrast control to maximum.
2.Check video level at pin 5 of P4 is approx. 4.5V pk-pk
composite video.
3.Monitor collector of Video output transistor Q6 with
oscilloscope.
4.Set black level of video to +oov using black level
controlVR2.

```
6.1 Top Cover Removal (Refer to Exploded View \(\# M Q 215 \mathrm{~L} / 02\) ) 1. Remove the 4 counter-sunk screws marked 6 from both sides of cover. 2. Remove the 3 dome headed screws marked 7 from the rear panel. 3. Lift off top cover.
6.2 Picture tube Replacement. (refer to Exploded View MMQ215L/01) Caution: Refer to SAFETY HARNING Section 1 before proceeding.
1.Remove light pen as in 7.4.1.
2.Remove top cover as in 6.1 .
3.Remove 10 way cable from the VDU03 P.C.B.
4. Disconnect the red high voltage cable from the picture tube and discharge tube.
5.Remove the CRT P.C.B. VDUO3 and defletion yoke from the neck of the picture tube.
6.Remove the six cheese-head sorews holding the front panel/CRT brackets, marked 16 on drawing.
7.Tilt Front panel forward and down until face of the picture tube is laying face down in front of Graphics monitor
8. Remove 4 outer hexagon nuts and washers from front panel studs, and slowly withdraw picture tube from front panel.

\subsection*{7.1 General description.}

The light pen is completely self-contained and requires only a \(5 V\) supply. The pen is activated by touching the end with a finger, at which time a T.T.L. touch signal is sent to the computer. The 'touch' signal only with the 'hit' signal is connected to the computer via the 5 pin Cannon connector located on the rear of the V.D.U. 5 V for the light pen is obtained from the P.S.U. card located on the Power Supply Unit (refer to Section 8).

\subsection*{7.2 Light Pen Adjustments.}
7.2.1 Sensitivity.

The pen sensitivity is factory set, to provide good performance in most applications. If necessary, the sensitivity may be adjusted by inserting a screwdriver through the small hole in the body. CLOCKNISE rotation DECREASES the sensitivity. The pen may be set for maximum sensitivity (without a light source) by increasing the sensitivity until the pen free-runs and then backing off until the outputs disappear.
7.3.1 Operation check.

Operation of the pen may be checked by using a laboratory oscilloscope both 3 signal source and display. Set the scope for a line triggered sweep at a speed of one centimeter per usec. Connect the vertical input to the pen light pulse output. When the tip of the pen is positioned over the trace a lusec pulse should appear about 300 nsec to the right of the pen. Increasing the sensitivity should reduce the delay.

\subsection*{7.4 Light Pen Removal and Replacement.}

The light pen connector is mated to the connector on the V.D.U. front panel via a locking type connector.
7.4.1 Removal.

The connector cannot be unmated until the sides of the plug are squeezed (Figure 1).

Light Pen Removal/Replacement.

7.4.2 Replacement.

Connection is made by pushing the plug on the light pen cardonto the connector on the VDU front panel until the locking tabs snap into the locked position (Figure 2).
\begin{tabular}{rrr}
2 & Moire \\
\(\therefore \quad 3\) & vert \\
centre & Rovcre \\
\(\cdots \quad 6\) & Blanc
\end{tabular}

\subsection*{8.1 General Description.}
< The power supply unit is located behind the front panel light Pen cut-out. The unit consists of the power transformer, voltage selector switches and the regulated \(D C\) power supply card VDU03. The unit provides 24 V and 12 V for the Main Card VDU01 and 5V for the Light Pen.

A multi-tapped primary power transformer is used. It has low magnetic leakage to prevent picture tube interference. The secondary output is connected via 3 pin connector to the Power Supply Card.
8.2 Power Supply Card VDU03.

\subsection*{8.2.1 Circuit Description.}

The bridge rectifier DB1 and the filter capacitors C1 and C2 provide the DC supply for the IC regulators UT and U2. U1 is the adjustable regulator used for the \(24 \mathrm{~V} D C\). Its output is factory adjusted to 24 V using VR1 and should only need readjusting should U1 or its associated components be replaced.

DB1 also supplies \(D C\) to the \(12 V\) regulator \(U 2\). To reduce the power dissipation in the 12 V regulator two 5.6 V zener diodes are used in series. The \(24 V\) and \(12 V\) are connected to the VDUO1 card via the 3 pin connector.

U2 also supplies 12 V to the 5 V regulator U3. U3 is used for the light pen supply and is connected via the 10 way connector where connections for the Light Pen's 'Hit' and 'Touch' signals are also made.

\subsection*{9.1 General Description.}

The main printed circuit card VDUO1 is mounted vertically on the opposits side of the power supply unit. It generates all the picture tube supplies, provides the driving circuitry for the deflection colls and processes thie video signal. Connections to the picture tube are made via the circuit board vDU02 which is mounted on its neck. This card has the video output amplifier, printed circuit board spark gaps and decoupling for the picture tube DC suplies.

\subsection*{9.2 Circuit description.}

\subsection*{9.2.1 VIDEO PREAMPLIFIER}

The video preamplifier ( \(Q 1, Q 2\) ) is designed to accept a 1 volt pk-pk video signal (negative sync) at 75 onms. The 500 ohn contrast control is provided at the input and is padded with R1 to provide the proper cable termination.

\subsection*{9.2.2 D.C. RESTORATION}

After the preamplifier, D1 and Q4 are used to provide the DC restoration at the base of Q3. \(D C\) restoration occurs during horizontal plyback. This is achieved by connecting the base of Q4, through R15 and D5, to the horizontal output transistor Q10.

The signal is now passed to the emitter follower Q3 where it is coupled to the video output stage (located on the VDU-02 P.C.B.) via a 5 way notdhed ribbon cable.

\subsection*{9.2.3 BLANKING}

Q5 is the retrace blanking transistor. It is driven by the horizontal pulses derived from the line output transistor Q10. These positive pulses, along with the positive vertical blanking pulses from pin 4 of the vertical timebase IC (02) are fed to the base of \(Q 5\) which turn it on, thus cutting off \(Q 6\) during vertical and horizontal retrace.
9.2.4 SINC SEPERATOR AND HORIZONTAL TIMEBASE

The same video that is fed to the contrast codrol is fed ta the sync amplifier Q8. After amplification the composite sync is connected to 01 via R29. This IC performs the functions of sync seperator, line oscillator and coincidence detector. The sync is fed to pin 9 via a wapefore conditioning network. The.
horizontal frequency is set by C17 and is adjustable by VR3．

Information for the colncidence detector is obtained from the horizontal output transistor Q10 via the \(H\) phase control VR4 and fed to pin 6．Adjustment of the mark－space ratio is effected by the voltage applied to pin 4．The horizontal driving pulses are obtained from pin 3 and are routed to the base of the driver transistor Q9．Vertical sync output is on pin 8，waich via R57 is connected to the vertical IC U2．

\section*{9．2．5 HORIZONTAL DRIVER}

Driver transformer \(T x 2\) energised by \(Q 9\) generates the drive of required form and magnitude for the horizontal output transistor Q10．A non simultaneous mode is employed so that the driver transistor is conducting，when the horizontal output transistor is cut－off．A 1.8 ohm series resistor \(R 44\) defines the forward base current of Q10，and a 58 ohm resistor \(R 45\) in parallel with the base－emitter junction prevents ringing voltages from turning the device on during flyback．

The network R41 and C26 across the primary of the driver transformer provides the required tuning and waveshaping． Decoupling for the whole driver stage is effected by R43，C52 and C53．\(R 43\) has a current limiting function in the event horizontal pulses are lost．

\section*{9．2．6 HORIZONTAL OUTPUT STAGE}

The horizontal output stage basically consists of the horizontal output transistor Q10，deflection coil（connected between linearity coil L2 and the dynamic focus transformer Tx3） and the horizontal output transformer TxI．

The horizontal timebase employs the series efficiency diode circuit（boost circuit）technique．A feature of this circuit is that the voltage developed across the boost capacitor C33 is added to the \(24 V\) DC supply and in this way about 637 is made available for direct drive of the line deflection coils．D8 is the series efficiency diode．The deflection coils are connected to the whole of the primary winding of the horizontal output transformer and in parallel with Q10，minimising the possibility of ringing during scan．The linearity correction and \(s\) correction is carried out by baving the linearity coil LZ and capacitors C30 and C29 in series with the horizontal deflection coils．The width coil LI provides adjustrent of the scan amplitude of about \(\pm 38\) ． \(1 \times 3\) is the dynamic focus transformer．

\subsection*{9.2.7 PICTURE TUBE SUPPLIES}

All the high voltage supplies for the picture tube are derived from the horizontal output transformer. The e.n.t. overwind incorporates the stack rectifier within the same housing. The output of the e.h.t. is 17 KV and is connected to the picture tube via a special high voltage clip on cable.

Pins 6 and 7 of the transformer have the winding to supply the other picture tube supplies. Using half wave rectification D10 produces approx. 800 V which is used as the DC bias for the dynamic focusing. Dll provides the negative voltage for the control grid of the picture tube (brightness control). C34 is the filter capacitor for the negative voltage supply. A larger than usual. filter capacitor is used for this supply so that it will retain bias on the grid for a long period after switch-off to avoid spot burn.

Power for the picture tube heater is obtained from pins 1 and 2 on the horizontal output transformer. R49 is used to trim the heater voltage to approximately 6.3 V RMS.

The transformer also generates the h.t. line voltage for the video output stage. This is obtained from pins 3 and 5 with D9 and C58 being the rectifier and filter.

All these supplies are connected to the CRT P.C.B. (YDOO2) via the 9 way notched flat ribbon cable.

\subsection*{9.2.8 DYNAMICS FOCUS}

Geometry of the picture tube causes the scanning electron beam to travel a greater distance when deflected to a corner as compared to the distance travelled by the bear at the centre of the picture tube screen: Because of these various distances optimum focus can only be achieved at one point. In practice, using a pixed D.C. focus voltage, a comprised focus adjustment has to be made. This is usually done by optimizing focus at some point half way between a corner and the centre of the screen. The VDU01 Card, however utilizes a system known as Dynamic Rocus. This system overcomes these limitations in the horizontal axis.

Dynamic Focus requires the focus voltage to be modulated at the horizontal frequency. The voltage varies depending on the position of the bean as it travels horizontally across the screen.

Tx3 is the Dynamic Focus transformer. Its primary is connected in series with the horizontal deflection coils. As the scanning current flows through the primary, the secondary produces a sine wave voltage at the horizontal frequency. This frequency is determined by CS9 and the secondary inductance. The output of the secondary is capacitively coupled via C3l to the adjustable D.C. focus voltage from VR9. Mixed \(A C+D C\) voltage is connected to the picture tube focus grid via 824 on the VDUO2 P.C.B.

\subsection*{9.2.9 VERTICAL TIMEBASE}

The IC U2, is used to generate the required current for the field deflection coils. This device incorporates the functions of vertical oscillator, driver and output stage in one envelope. A class \(B\) output stage with flyback boost is used. The deflection coils are current driven; hence variation in their resistance does not affect the scan amplitude.

To obtain an optimum valve of current feedback, the sampling resistor is formed by two resistors \(R 58\) and \(R 59\) connected in parallel. The sync pulse is coupled capacitively to pin 5 and the associated 2.2 K onm resistor reduces the impedance of the feeding line to a level at which pick up of horizontal pulses is of little significance.

To ensure good tracking between horizontal and vertical scans with beam current variations, the height control is fed srom the 24 DC line filered by R69 \& C44.
10. CRT CARD VDUO2.

\subsection*{10.1 Circuit description.}
10.1.1 Video Output Stage.

The output circuit consists of the emitter-driven video transistor Q6 and the collector load resistor 820 . A zener diode D4 andits associated components hold the base of the video transistor at a d.c. potential of 7.5V.

The emitter of this transistor driven by \(Q T\), is a high Prequency transistor. The overall voltage gain of this stage is 17.


POWER SUPPLY CARD VDU03


MAIN CIRCUIT CARD VDU 01

adyう kiddns

\section*{vDUO3 \\ VDU POWER}


\subsection*{13.1 Parts List for Main Card VDU01}

Circuit Ref. Part No. Description
TRANSISTORS
\begin{tabular}{lll} 
Q1 & D3011 & EC549 \\
Q2 & D3016 & BC559 \\
Q3 & D3016 & BC559 \\
Q4 & D3011 & BC549 \\
Q8 & D3016 & BC559 \\
Q9 & D4001 & BD 131 \\
Q10 & D4005 & BU426 \\
Q11 & D3011 & BC549
\end{tabular}

\section*{INTEGATED CIRCUITS}
\begin{tabular}{lll} 
U1 & B0049 & TDA2591 \\
U2 & B0048 & TDA2651
\end{tabular}

\section*{DIODES}
\begin{tabular}{lll} 
D1 & D5014 & BAW62 \\
D2 & D5014 & BAW62 \\
D3 & D5014 & BAW62 \\
D5 & D5017 & BYV96E \\
D6 & D5016 & BYN96E \\
D7 & D5013 & BAS111 \\
D8 & D5018 & BY229/400 \\
D9 & D5017 & BYV96E \\
D10 & D5015 & BY184 \\
D11 & D5015 & BY184 \\
D12 & D5008 & IN4004 \\
D13 & D5009 & IN914
\end{tabular}

\section*{RESISTORS}

All resistors are \(1 / 4 \mathrm{w}\), \(+-5 \%\) Metal Film Type unless otherwise indicated. Values in onms.

Circuit Ref. Part No. Description.
\begin{tabular}{|c|c|c|}
\hline R1 & R1012 & 82 \\
\hline R2 & R1040 & 18K \\
\hline R3 & R1033 & \(4 \times 7\) \\
\hline R4 & R1013 & 100 \\
\hline R5 & 81013 & 100 \\
\hline R6 & -1021 & 470 \\
\hline R7 & R1049 & 100\% \\
\hline R8 & R1025 & 1 K \\
\hline R9 & R1037 & 108 \\
\hline R10 & 81029 & 2X2 \\
\hline R11 & R1045 & 47 K \\
\hline R12 & R 1040 & 18 K \\
\hline R13 & R1011 & 68 \\
\hline R14 & R1009 & 47 \\
\hline R15 & R1047 & 68K \\
\hline R16 & R1033 & \(4 \mathrm{K7}\) \\
\hline R25 & R1022 & 560 \\
\hline R26 & R1067 & 3M3 \\
\hline R27 & R 1064 & 1 M 8 \\
\hline R28 & R1031 & 383 \\
\hline R30 & R1026 & 1 K 2 \\
\hline R31 & R1031 & 3 K 3 \\
\hline R32 & R1065 & 2M2 \\
\hline R33 & R1038 & 12x 28 \\
\hline R34 & R1048 & 82 R \\
\hline R35 & R 1050 & 120k \\
\hline R36 & R1043 & 338 \\
\hline R37 & R1017 & 220 \\
\hline R38 & R1017 & 220 \\
\hline R39 & R1002 & 12 \\
\hline R40 & R1001 & 10 \\
\hline 841 & R1014 & 120 \\
\hline R42 & R1048 & \({ }^{82 \mathrm{~K}} 5 \mathrm{HATT}\) \\
\hline R43 & R5006 & 68 188 WATT \\
\hline R44 & R1076 & \(1 R 8\)
68 \\
\hline R45 & R1011 & 220 \\
\hline R46 & R1017 & 1288 \\
\hline R47
R 48 & R1028
R1028
R & \(1 \mathrm{1R8}\) \\
\hline R48
8 & 84006 & 101 WATT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Circuit Ref. & Part No. & \multicolumn{3}{|l|}{Description.} \\
\hline R50 & R1028 & 1K8 & & \\
\hline R51 & R1025 & 1K & & \\
\hline R52 & R2002 & & Carbon Film & 1/2 WATT \\
\hline R53 & R10б5 & 2 M 2 & & \\
\hline R54 & R2003 & 1 M 5 & Carbon Film & 1/2 WATT \\
\hline R56 & R2003 & 1 M 5 & Carbon Film & 1/2 WATI \\
\hline R57 & R1064 & 1 M 8 & & \\
\hline R58 & R1076 & 1R8 & & \\
\hline R59 & R 1078 & 1R5 & & \\
\hline 860 & R1045 & 47K & & \\
\hline 861 & R1050 & 120K & & \\
\hline R62 & R1042 & 27K & & \\
\hline R63 & R1029 & 2K2 & & \\
\hline 864 & R 1052 & 180K & & \\
\hline R65 & R1051 & 150R & & \\
\hline R66 & R1048 & 82K & & \\
\hline R67 & R 1048 & 82K & & \\
\hline R68 & R 1038 & 12X & & \\
\hline R69 & R 1025 & 1 K & & \\
\hline 870 & R4013 & 15 & 1 WatT & \\
\hline 871 & R5007 & 2R2 & 5 WATT & \\
\hline 872 & R 1008 & 39 & & \\
\hline 873 & R1018 & 270 & & \\
\hline R74 & R1011 & 68 & & \\
\hline 875 & R 1055 & 330K & & \\
\hline R76 & R1031 & 3K3 & & \\
\hline R77 & R1013 & 100 & & \\
\hline
\end{tabular}

\section*{VARIABLE RESISTORS}

VR 1
VR3
VR4
VR5
VR6
VR7
VR8 VR9

R6111
R6112
R6112
R6113
R6114
86114
R6110
R6129

500 Contrast
50K Cermet Trim
50K Cermet Trim
100R Cermet Trim
10K Cermet Trim
10R Cermet Trim
IM Brightness
2M7 Focus

Circuit Ref. Part No.
CAPACITORS



\section*{TRANSFORMERS}

G5197
G5194
G5184
WIDTH
LINEARITY
DEFLECTION YORE

\section*{MISCELLANEOUS}

G5211
6 PIN CONNECTOR
G5242
4 PIN CONNECTOR
D6003
G5246
G5244
G6017
HORIZONTAL OUTPUT
HORIZONTAL DRIVER
DYNAMIC FOCUS

\section*{COILS}

10 PIN CONNECTOR
5 PIN CONNECTOR
9 PIN CONNECTOR
EHT Cable and Cap
13.2 Parts List for CRT Card VDUO 1

Circuit Ref. Rart No. Description

\section*{TRANSISTORS}
\begin{tabular}{lllll} 
Q5 & D3011 & BC549 & \\
Q6 & D4002 & BF337 & \\
Q7 & D3021 & & BSX20 & \\
& & DIODES & & \\
& & & & \\
& & BZY88/TV5 & ZENER
\end{tabular}

\section*{RESISTORS}

All resistors are \(1 / 4 \mathrm{H}\), +- 5\% Metal Filmtype unless other-wise indicated. Values in ohms.
\begin{tabular}{llll} 
R17 & R1023 & 680 & \\
R18 & R1023 & 680 & \\
R19 & R1010 & 56 & \\
R20 & R5005 & \(1 K 2\) & 5 Watt \\
R21 & R1009 & 47 & \\
R22 & R2005 & 470 & Carbon Film \\
R23 & R2000 & \(22 k\) & Carbon Film \\
R24 & R2001 & \(220 K\) & Carbon Film \\
VR2 & R6117 & \(1 K\) & Cermet Trim
\end{tabular}

\section*{CAP ACITORS}
c6
C7
C8
C9
C 10
C11

P

C2533
C2533
C7124
C2525
C4001
C4004

10N 50v Ceramic
10n 50v Ceramic
20u 100v Electrolytic
100n 50y Ceramic
100n 400v Polycarbonate
10n IXV Polycarbonate

\section*{MISCELLANEOUS}

G 5193
8 PIN CRT Socket
13.3 Parts List For Power Supply Card vDU03.

Circuit Ref. Part No. Description.
IC'S

U1
U2
U3

> D1006
> D081

D0805
LM317
7812
7805

DIODES
\begin{tabular}{lll} 
& & IN5339 2ENER \\
D1 & D5004 & IN5339 2ENER \\
D2 & D5004 & BY225 BRIDGE RECTIFIER \\
DB1 & D2010 &
\end{tabular}

\section*{RESISTORS}
\begin{tabular}{llll} 
& & R1079 & 2R \\
R1 & R1013 & \(1 / 4\) Watt \\
R2 & R10 & \(1 / 4\) Watt \\
VR1 & R6204 & &
\end{tabular}

\section*{CAPACITORS}
\begin{tabular}{ll} 
C1 & C7129 \\
C2 & C7129 \\
C3 & C1010 \\
C4 & C1010 \\
C5 & C1010 \\
C6 & \(C 1010\) \\
C7 & \(C 1010\) \\
C8 & C1010
\end{tabular}
\begin{tabular}{lll}
2500 & \(<63 v\) & Electrolytic \\
\(2500 u\) & \(63 v\) & Electrolytic \\
\(100 n\) & \(100 v\) & Ceramic \end{tabular}



16. MECHANICAL PARTS LIST.

\begin{tabular}{lll} 
16.2 Parts List for Exploded View MQ2151/02. \\
& \\
Ref.No. & Part No. & Description. \\
1 & & \\
2 & \(J 0209\) & Front Panel \\
3 & \(J 0271\) & Top Cover \\
4 & \(J 0208\) & Base Panel \\
5 & \(J 0006\) & Foot \\
6 & \(H 0132\) & Screw \(1 / 4 \pi \times 1^{\prime \prime}\) \\
8 & \(H 0103\) & Screw \(86 \times 3 / 4^{\prime \prime} \mathrm{CHD}\) \\
& \(H 0209\) & Nut
\end{tabular}
```


[^0]: C.M.I. MAINFRAME SERVICE MANUAL - Page 13

